{"title":"拉伸作用下双相钢组织与失效机理的微观力学研究","authors":"M. S. Mohsenzadeh","doi":"10.5267/j.esm.2023.1.003","DOIUrl":null,"url":null,"abstract":"In this study, the influence of the volume fraction of the martensite phase as well as the size of the martensite particles on the mechanism of particle fracture in dual-phase steel were examined. A combined continuum/dislocation based approach was used in order to model the average stress in the martensite particles. It was found that the model predictions are in accordance with the experimental results. For the same volume fraction of the martensite particles, the model predicts an increase of the internal stress and the average stress in the martensite particles with increasing the particles size. Since the fracture strength of the martensite depends on its volume fraction, the particle size has no effect on the mechanism of particle fracture. Increasing the volume fraction of the martensite particles results in the enhancement of the internal stress in the martensite particles. However, it has a slight influence on the average stress in the particles. Nevertheless, because of decreasing the fracture strength of martensite with increasing its volume fraction, this parameter has a main role in the occurrence of the particle fracture mechanism.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micromechanical study on the correlation of the microstructure and failure mechanism of dual-phase steels under tension\",\"authors\":\"M. S. Mohsenzadeh\",\"doi\":\"10.5267/j.esm.2023.1.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the influence of the volume fraction of the martensite phase as well as the size of the martensite particles on the mechanism of particle fracture in dual-phase steel were examined. A combined continuum/dislocation based approach was used in order to model the average stress in the martensite particles. It was found that the model predictions are in accordance with the experimental results. For the same volume fraction of the martensite particles, the model predicts an increase of the internal stress and the average stress in the martensite particles with increasing the particles size. Since the fracture strength of the martensite depends on its volume fraction, the particle size has no effect on the mechanism of particle fracture. Increasing the volume fraction of the martensite particles results in the enhancement of the internal stress in the martensite particles. However, it has a slight influence on the average stress in the particles. Nevertheless, because of decreasing the fracture strength of martensite with increasing its volume fraction, this parameter has a main role in the occurrence of the particle fracture mechanism.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2023.1.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2023.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
A micromechanical study on the correlation of the microstructure and failure mechanism of dual-phase steels under tension
In this study, the influence of the volume fraction of the martensite phase as well as the size of the martensite particles on the mechanism of particle fracture in dual-phase steel were examined. A combined continuum/dislocation based approach was used in order to model the average stress in the martensite particles. It was found that the model predictions are in accordance with the experimental results. For the same volume fraction of the martensite particles, the model predicts an increase of the internal stress and the average stress in the martensite particles with increasing the particles size. Since the fracture strength of the martensite depends on its volume fraction, the particle size has no effect on the mechanism of particle fracture. Increasing the volume fraction of the martensite particles results in the enhancement of the internal stress in the martensite particles. However, it has a slight influence on the average stress in the particles. Nevertheless, because of decreasing the fracture strength of martensite with increasing its volume fraction, this parameter has a main role in the occurrence of the particle fracture mechanism.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.