{"title":"附加剪切镦粗时工件的应力状态","authors":"Z. Ashkeyev, Maxat Abishkenov, K. Nogaev","doi":"10.5267/j.esm.2022.9.002","DOIUrl":null,"url":null,"abstract":"The article presents an analysis of the stress state of workpieces during upsetting of workpieces with an additional shear. For the analysis, the slip line method and the finite element method were used. A schematic diagram of upsetting in dies with “floating” elements, contributing to the implementation of additional shear, reduction of barreling, inhomogenous deformation and contour tensile stresses, is presented. The analysis of the research results showed that during upsetting of workpieces with additional shift forces, tensile stresses on the side surface of the workpieces decrease, which excludes the appearance of cracks on the side surface of the samples, especially when processing low-plastic alloy steels and alloys, and also reduces the barreling of the side surface.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress state of workpieces during upsetting with additional shear\",\"authors\":\"Z. Ashkeyev, Maxat Abishkenov, K. Nogaev\",\"doi\":\"10.5267/j.esm.2022.9.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents an analysis of the stress state of workpieces during upsetting of workpieces with an additional shear. For the analysis, the slip line method and the finite element method were used. A schematic diagram of upsetting in dies with “floating” elements, contributing to the implementation of additional shear, reduction of barreling, inhomogenous deformation and contour tensile stresses, is presented. The analysis of the research results showed that during upsetting of workpieces with additional shift forces, tensile stresses on the side surface of the workpieces decrease, which excludes the appearance of cracks on the side surface of the samples, especially when processing low-plastic alloy steels and alloys, and also reduces the barreling of the side surface.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2022.9.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.9.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Stress state of workpieces during upsetting with additional shear
The article presents an analysis of the stress state of workpieces during upsetting of workpieces with an additional shear. For the analysis, the slip line method and the finite element method were used. A schematic diagram of upsetting in dies with “floating” elements, contributing to the implementation of additional shear, reduction of barreling, inhomogenous deformation and contour tensile stresses, is presented. The analysis of the research results showed that during upsetting of workpieces with additional shift forces, tensile stresses on the side surface of the workpieces decrease, which excludes the appearance of cracks on the side surface of the samples, especially when processing low-plastic alloy steels and alloys, and also reduces the barreling of the side surface.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.