应用经典层压理论预测熔融沉积(FDM)打印PLA的拉伸强度

Q2 Materials Science
S. R. Rajpurohit, H. Dave, K. Rajurkar
{"title":"应用经典层压理论预测熔融沉积(FDM)打印PLA的拉伸强度","authors":"S. R. Rajpurohit, H. Dave, K. Rajurkar","doi":"10.5267/j.esm.2021.12.002","DOIUrl":null,"url":null,"abstract":"The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of tensile strength of fused deposition modeling (FDM) printed PLA using classic laminate theory\",\"authors\":\"S. R. Rajpurohit, H. Dave, K. Rajurkar\",\"doi\":\"10.5267/j.esm.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.\",\"PeriodicalId\":37952,\"journal\":{\"name\":\"Engineering Solid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Solid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.esm.2021.12.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2021.12.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

摘要

由于对打印件力学性能的了解有限,限制了熔融沉积建模(FDM)的应用。因此,需要确定FDM性能的机械性能,以充分利用FDM工艺的优势。在本研究中,经典层压理论(CLT)被用于不同层厚和栅格宽度的配置。通过FDM打印的聚乳酸(PLA)单向试样,在0°、45°和90°的不同层高和栅格宽度组合下,实验获得了CLT材料所需的弹性常数。针对这些不同的层高和栅格宽度组合,开发了本构模型来预测PLA零件的拉伸性能。实验获得了FDM打印双向试件的抗拉强度,以验证所提出的CLT模型结果。试验抗拉强度数据与所提出的CLT模型预测的数据吻合较好。与90°栅格角相比,0°栅格角获得了更高的拉伸强度和模量。在双向打印样品的情况下,45°/-45°光栅角、30°/-60°和0°/90°光栅角的拉伸强度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of tensile strength of fused deposition modeling (FDM) printed PLA using classic laminate theory
The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信