DASTData:一个雾云模型,用于智能城市中物联网数据的分布式存储和可追溯性

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Daniel Lopes Ferreira, R. R. Righi, V. F. Rodrigues
{"title":"DASTData:一个雾云模型,用于智能城市中物联网数据的分布式存储和可追溯性","authors":"Daniel Lopes Ferreira, R. R. Righi, V. F. Rodrigues","doi":"10.5335/rbca.v15i2.14234","DOIUrl":null,"url":null,"abstract":"In this work, a solution for the distributed storage of data in Smart Cities is presented. An Edge-Fog-Cloud architecture that partitions the data through the Sharding technique proposes a hierarchical model that manipulates IoT data generated by Smart Cities. The problem is related to the approaches used to promote an integrated environment. Related works tend to use cloud-focused approaches that generate high latency rates, and those that use Fog Computing only use the layer as middleware, not exploring greater possibilities for use. In this context, this work presents the DASTData model that aims to enable lower latency rates, more data security, fault tolerance, high availability, and concurrent queries to promote a better experience in data management and availability in smart cities. In addition, our contribution to the literature is related to the proposition of an architecture focused on enabling the traceability of users who have mobile behavior in the city, providing the ability to analyze patterns and occurrences through the consolidation of data from one or more individuals. In the results obtained through the tests carried out in this work, we observed that in queries DASTData is up to 73% more efficient.\n","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DASTData: a Fog-Cloud model for distributed storage and traceability of IoT data in Smart Cities\",\"authors\":\"Daniel Lopes Ferreira, R. R. Righi, V. F. Rodrigues\",\"doi\":\"10.5335/rbca.v15i2.14234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a solution for the distributed storage of data in Smart Cities is presented. An Edge-Fog-Cloud architecture that partitions the data through the Sharding technique proposes a hierarchical model that manipulates IoT data generated by Smart Cities. The problem is related to the approaches used to promote an integrated environment. Related works tend to use cloud-focused approaches that generate high latency rates, and those that use Fog Computing only use the layer as middleware, not exploring greater possibilities for use. In this context, this work presents the DASTData model that aims to enable lower latency rates, more data security, fault tolerance, high availability, and concurrent queries to promote a better experience in data management and availability in smart cities. In addition, our contribution to the literature is related to the proposition of an architecture focused on enabling the traceability of users who have mobile behavior in the city, providing the ability to analyze patterns and occurrences through the consolidation of data from one or more individuals. In the results obtained through the tests carried out in this work, we observed that in queries DASTData is up to 73% more efficient.\\n\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v15i2.14234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v15i2.14234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种智能城市数据分布式存储的解决方案。通过Sharding技术对数据进行分区的Edge-Fog-Cloud架构提出了一种分层模型,可以操纵智慧城市生成的物联网数据。这个问题与用来促进综合环境的方法有关。相关工作倾向于使用以云为中心的方法,这些方法会产生高延迟率,而那些使用雾计算的方法只将该层用作中间件,而没有探索更大的使用可能性。在此背景下,本工作提出了DASTData模型,旨在实现更低的延迟率、更高的数据安全性、容错性、高可用性和并发查询,以促进智能城市中更好的数据管理和可用性体验。此外,我们对文献的贡献与一个架构的主张有关,该架构的重点是使在城市中有移动行为的用户能够追踪,提供通过整合来自一个或多个个体的数据来分析模式和事件的能力。在这项工作中进行的测试所获得的结果中,我们观察到,在查询中,DASTData的效率提高了73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DASTData: a Fog-Cloud model for distributed storage and traceability of IoT data in Smart Cities
In this work, a solution for the distributed storage of data in Smart Cities is presented. An Edge-Fog-Cloud architecture that partitions the data through the Sharding technique proposes a hierarchical model that manipulates IoT data generated by Smart Cities. The problem is related to the approaches used to promote an integrated environment. Related works tend to use cloud-focused approaches that generate high latency rates, and those that use Fog Computing only use the layer as middleware, not exploring greater possibilities for use. In this context, this work presents the DASTData model that aims to enable lower latency rates, more data security, fault tolerance, high availability, and concurrent queries to promote a better experience in data management and availability in smart cities. In addition, our contribution to the literature is related to the proposition of an architecture focused on enabling the traceability of users who have mobile behavior in the city, providing the ability to analyze patterns and occurrences through the consolidation of data from one or more individuals. In the results obtained through the tests carried out in this work, we observed that in queries DASTData is up to 73% more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信