迁移学习在产品保修数据双变量预测中的应用

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Joel Machado Pires, William Torelli, Luciana Escobar
{"title":"迁移学习在产品保修数据双变量预测中的应用","authors":"Joel Machado Pires, William Torelli, Luciana Escobar","doi":"10.5335/rbca.v15i2.14154","DOIUrl":null,"url":null,"abstract":"The reliability and resource management of products for warranty is important. Furthermore, the number of failures of aproduct over time of use and level of expenditure can assume different distributions. Approaches with parametric modelsbring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. Weshow a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates inproducts that are under warranty. The solution was applied to data from an American company, recorded from 2015 to2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts wasperformed for each combination of part, car and model year. Tests showed that the model performed well in predictingdata for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 milesas input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from thenormal distribution.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning applied to bivariate forecasting on product warranty data\",\"authors\":\"Joel Machado Pires, William Torelli, Luciana Escobar\",\"doi\":\"10.5335/rbca.v15i2.14154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reliability and resource management of products for warranty is important. Furthermore, the number of failures of aproduct over time of use and level of expenditure can assume different distributions. Approaches with parametric modelsbring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. Weshow a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates inproducts that are under warranty. The solution was applied to data from an American company, recorded from 2015 to2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts wasperformed for each combination of part, car and model year. Tests showed that the model performed well in predictingdata for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 milesas input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from thenormal distribution.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v15i2.14154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v15i2.14154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

保证产品的可靠性和资源管理是很重要的。此外,产品的故障数量随使用时间和支出水平的变化可能会有不同的分布。当存在正态分布时,采用参数模型的方法可以获得很好的结果,深度学习的应用前景广阔。我们展示了一种新的方法,将带有迁移学习的深度学习模型应用于保修期产品的双变量修理率预测。该解决方案应用于一家美国公司从2015年到2022年记录的数据,涉及69种不同类型汽车的12种不同类型的零件。对预测的绝对误差进行了评估,对每个零件、汽车和车型年的组合进行了评估。测试表明,该模型在预测70个月服役和7万英里的数据方面表现良好,使用的数据来自至少15个月服役和1000英里的汽车。还得出结论,对于数据不完整和分布远离正态分布的情况,该解决方案是鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning applied to bivariate forecasting on product warranty data
The reliability and resource management of products for warranty is important. Furthermore, the number of failures of aproduct over time of use and level of expenditure can assume different distributions. Approaches with parametric modelsbring good results when there is a normal distribution, and the application of Deep Learning (DL) is very promising. Weshow a new methodology for the application of DL models with transfer learning to bivariate forecasts of repair rates inproducts that are under warranty. The solution was applied to data from an American company, recorded from 2015 to2022, of 12 different types of parts from 69 different types of cars. An evaluation of the absolute error of the forecasts wasperformed for each combination of part, car and model year. Tests showed that the model performed well in predictingdata for 70 months in service and 70,000 miles, using data from cars with at least 15 months in service and 1,000 milesas input. It was also concluded that the solution is robust for cases of incomplete data and distributions far from thenormal distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信