基于深度学习的植物识别系统的数据增强策略和启发效应:一个案例研究

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Luciano Araújo Dourado Filho, R. Calumby
{"title":"基于深度学习的植物识别系统的数据增强策略和启发效应:一个案例研究","authors":"Luciano Araújo Dourado Filho, R. Calumby","doi":"10.5335/rbca.v14i2.13487","DOIUrl":null,"url":null,"abstract":"Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such as Deep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing data diversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e., Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques to generate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effects of DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating the negative effects related to underrepresentation mainly caused by the dataset imbalance.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Augmentation policies and heuristics effects over dataset imbalance for developing plant identification systems based on Deep Learning: A case study.\",\"authors\":\"Luciano Araújo Dourado Filho, R. Calumby\",\"doi\":\"10.5335/rbca.v14i2.13487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such as Deep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing data diversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e., Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques to generate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effects of DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating the negative effects related to underrepresentation mainly caused by the dataset imbalance.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v14i2.13487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v14i2.13487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

数据增强(Data augmentation, DA)是深度卷积神经网络(Deep Convolutional Neural Networks, DCNN)等计算机视觉模型中提高有效性的一种广为人知的策略。虽然它可以通过增加数据多样性来提高模型的泛化,但在这项工作中,我们建议研究它在植物物种识别任务中对两种不同来源的数据集不平衡(即内容和采样不平衡)的影响。我们系统地评估了几种生成增强数据集的技术,这些数据集用于训练DCNN模型,从而能够全面研究数据处理在不平衡衰减方面的影响。结果可以推断,数据增强可以减轻主要由数据集不平衡引起的代表性不足相关的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Augmentation policies and heuristics effects over dataset imbalance for developing plant identification systems based on Deep Learning: A case study.
Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such as Deep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing data diversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e., Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques to generate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effects of DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating the negative effects related to underrepresentation mainly caused by the dataset imbalance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信