机器人机械手的强化学习控制

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
L. P. Cotrim, M. M. José, E. Cabral
{"title":"机器人机械手的强化学习控制","authors":"L. P. Cotrim, M. M. José, E. Cabral","doi":"10.5335/rbca.v13i3.12091","DOIUrl":null,"url":null,"abstract":"Since the establishment of robotics in industrial applications, industrial robot programming involves therepetitive and time-consuming process of manually specifying a fixed trajectory, which results in machineidle time in terms of production and the necessity of completely reprogramming the robot for different tasks.The increasing number of robotics applications in unstructured environments requires not only intelligent butalso reactive controllers, due to the unpredictability of the environment and safety measures respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects and the third reward function generated better agents for both algorithms.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning control of robot manipulator\",\"authors\":\"L. P. Cotrim, M. M. José, E. Cabral\",\"doi\":\"10.5335/rbca.v13i3.12091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the establishment of robotics in industrial applications, industrial robot programming involves therepetitive and time-consuming process of manually specifying a fixed trajectory, which results in machineidle time in terms of production and the necessity of completely reprogramming the robot for different tasks.The increasing number of robotics applications in unstructured environments requires not only intelligent butalso reactive controllers, due to the unpredictability of the environment and safety measures respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects and the third reward function generated better agents for both algorithms.\",\"PeriodicalId\":41711,\"journal\":{\"name\":\"Revista Brasileira de Computacao Aplicada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computacao Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/rbca.v13i3.12091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/rbca.v13i3.12091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自机器人技术在工业应用中建立以来,工业机器人编程涉及手动指定固定轨迹的重复且耗时的过程,这导致了机器在生产方面的空闲时间,并且需要对机器人进行完全的重新编程以适应不同的任务。由于环境和安全措施的不可预测性,越来越多的机器人在非结构化环境中的应用不仅需要智能控制器,还需要反应控制器。本文介绍了两类强化学习算法的比较分析,值迭代(Q-Learning/DQN)和策略迭代(REINFORCE),应用于在充满障碍物的模拟环境中定位机器人机械臂的离散任务,事先不知道障碍物的位置或机械臂的动力学。在1自由度机器人、2自由度机器人、Kuka KR16工业机器人、随机设置设定值/障碍物的Kuka KR16工业机器人四个日益复杂的测试项目中,分析了不同奖励函数下智能体的性能和算法收敛性。DQN算法在所有测试项目中表现出更好的性能并减少了训练时间,第三个奖励函数为两种算法生成了更好的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning control of robot manipulator
Since the establishment of robotics in industrial applications, industrial robot programming involves therepetitive and time-consuming process of manually specifying a fixed trajectory, which results in machineidle time in terms of production and the necessity of completely reprogramming the robot for different tasks.The increasing number of robotics applications in unstructured environments requires not only intelligent butalso reactive controllers, due to the unpredictability of the environment and safety measures respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects and the third reward function generated better agents for both algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信