基于SRCNN的太赫兹弹性超分辨应力成像

D. Liu, Zhen Zhen, Yufen Du, K. Kang, Haonan Zhao, Chuanwei Li, Zhiyong Wang
{"title":"基于SRCNN的太赫兹弹性超分辨应力成像","authors":"D. Liu, Zhen Zhen, Yufen Du, K. Kang, Haonan Zhao, Chuanwei Li, Zhiyong Wang","doi":"10.4236/opj.2022.1211019","DOIUrl":null,"url":null,"abstract":"Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution Stress Imaging for Terahertz-Elastic Based on SRCNN\",\"authors\":\"D. Liu, Zhen Zhen, Yufen Du, K. Kang, Haonan Zhao, Chuanwei Li, Zhiyong Wang\",\"doi\":\"10.4236/opj.2022.1211019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained.\",\"PeriodicalId\":64491,\"journal\":{\"name\":\"光学与光子学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学与光子学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/opj.2022.1211019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2022.1211019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受衍射极限的限制,空间分辨率低是太赫兹成像的缺点之一。空间分辨率低也是限制太赫兹成像应力测量发展的原因之一。本文将太赫兹时域光谱(THz-TDS)全场应力场测量与超分辨率卷积神经网络(SRCNN)算法相结合,获得高空间分辨率的应力场。建立了从平面应力状态到太赫兹- tds信号的调制模型。获得了大量的模拟集来训练SRCNN模型。利用训练好的SRCNN模型对数值应力场和物理应力场进行成像,得到了由捕获的太赫兹- tds信号计算的应力场空间分辨率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super-Resolution Stress Imaging for Terahertz-Elastic Based on SRCNN
Limited by diffraction limit, low spatial resolution is one of the shortcomings of terahertz imaging. Low spatial resolution is also one of the reasons limiting the development of stress measurement using terahertz imaging. In this paper, the full-field stress measurement using Terahertz Time Domain Spectroscopy (THz-TDS) is combined with Super-Resolution Convolutional Neural Network (SRCNN) algorithm to obtain stress fields with high spatial resolution. A modulation model from a plane stress state to a THz-TDS signal is constructed. A large number of simulated sets are obtained to train the SRCNN model. By applying the trained SRCNN model to imaging the numerical and physical stress fields, the improved spatial resolution of stress field calculated from the captured THz-TDS signal is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
431
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信