两种碳纳米管和一种新型碳纳米管储钠性能的比较研究

IF 0.6 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Tingting Xu Tingting Xu, Xiaohua Xie Xiaohua Xie, Huisheng Huang and Xinwei Zhao Huisheng Huang and Xinwei Zhao
{"title":"两种碳纳米管和一种新型碳纳米管储钠性能的比较研究","authors":"Tingting Xu Tingting Xu, Xiaohua Xie Xiaohua Xie, Huisheng Huang and Xinwei Zhao Huisheng Huang and Xinwei Zhao","doi":"10.52568/001243/jcsp/45.03.2023","DOIUrl":null,"url":null,"abstract":"Density functional theory (DFT) is employed to research three carbon tubes (CNTs), SWCNT, N-NiCNT, and N-CoCNT. The first two structures synthesized by other groups and N-NiCNT has better sodium storage properties as sodium-ion battery (SIB) anode than SWCNT, the last one is a designed structure. Here, the intrinsic cause why N-NiCNT has better performance than SWCNT has been located at molecular and atomic levels, meanwhile the potential of N-CoCNT as anode candidate is predicted. The researched properties that determine the electrochemical performances involve in structure stability, frontier molecular orbital, partial density of state analysis, and sodiation barrier comparison. The results indicate that the lower sodiation barrier, expanding transfer space, more stable structure stability of N-NiCNT should be responsible for its better sodium storage performance, which consists with the experimental results. In addition, the designed N-CoCNT anode is a promising candidate as SIB anode owing to better stability, lower barrier, and strong N-Co interaction than N-NiCNT","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study on Sodium Storage Properties of Two CNTs and a Novel CNT Design\",\"authors\":\"Tingting Xu Tingting Xu, Xiaohua Xie Xiaohua Xie, Huisheng Huang and Xinwei Zhao Huisheng Huang and Xinwei Zhao\",\"doi\":\"10.52568/001243/jcsp/45.03.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory (DFT) is employed to research three carbon tubes (CNTs), SWCNT, N-NiCNT, and N-CoCNT. The first two structures synthesized by other groups and N-NiCNT has better sodium storage properties as sodium-ion battery (SIB) anode than SWCNT, the last one is a designed structure. Here, the intrinsic cause why N-NiCNT has better performance than SWCNT has been located at molecular and atomic levels, meanwhile the potential of N-CoCNT as anode candidate is predicted. The researched properties that determine the electrochemical performances involve in structure stability, frontier molecular orbital, partial density of state analysis, and sodiation barrier comparison. The results indicate that the lower sodiation barrier, expanding transfer space, more stable structure stability of N-NiCNT should be responsible for its better sodium storage performance, which consists with the experimental results. In addition, the designed N-CoCNT anode is a promising candidate as SIB anode owing to better stability, lower barrier, and strong N-Co interaction than N-NiCNT\",\"PeriodicalId\":17253,\"journal\":{\"name\":\"Journal of the chemical society of pakistan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the chemical society of pakistan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.52568/001243/jcsp/45.03.2023\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001243/jcsp/45.03.2023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用密度泛函理论(DFT)对swcnts、N-NiCNT和n - cont三种碳管(CNTs)进行了研究。前两种结构是由其他基团和N-NiCNT合成的,作为钠离子电池(SIB)阳极具有比swcnts更好的储钠性能,后一种结构是经过设计的结构。本文从分子和原子层面分析了N-NiCNT比swcnts性能更好的内在原因,同时预测了n - cnt作为阳极候选材料的潜力。所研究的决定电化学性能的性质包括结构稳定性、前沿分子轨道、部分态密度分析和钠势垒比较。结果表明,N-NiCNT具有较低的钠势垒、更大的转移空间、更稳定的结构稳定性,这与实验结果一致。此外,与N-NiCNT相比,设计的n - cont阳极具有更好的稳定性、更低的势垒和强的N-Co相互作用,是SIB阳极的有希望的候选者
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study on Sodium Storage Properties of Two CNTs and a Novel CNT Design
Density functional theory (DFT) is employed to research three carbon tubes (CNTs), SWCNT, N-NiCNT, and N-CoCNT. The first two structures synthesized by other groups and N-NiCNT has better sodium storage properties as sodium-ion battery (SIB) anode than SWCNT, the last one is a designed structure. Here, the intrinsic cause why N-NiCNT has better performance than SWCNT has been located at molecular and atomic levels, meanwhile the potential of N-CoCNT as anode candidate is predicted. The researched properties that determine the electrochemical performances involve in structure stability, frontier molecular orbital, partial density of state analysis, and sodiation barrier comparison. The results indicate that the lower sodiation barrier, expanding transfer space, more stable structure stability of N-NiCNT should be responsible for its better sodium storage performance, which consists with the experimental results. In addition, the designed N-CoCNT anode is a promising candidate as SIB anode owing to better stability, lower barrier, and strong N-Co interaction than N-NiCNT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
41
审稿时长
3.4 months
期刊介绍: This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信