Esma Nur Gecer and Ramazan Erenler Esma Nur Gecer and Ramazan Erenler
{"title":"紫锥菊生物合成纳米银的研究纳特。及其抗氧化活性","authors":"Esma Nur Gecer and Ramazan Erenler Esma Nur Gecer and Ramazan Erenler","doi":"10.52568/001187/jcsp/44.06.2022","DOIUrl":null,"url":null,"abstract":"In this work, silver nanoparticles (Ep-AgNPs) were synthesised using Echinacea pallida (Nutt.) Nutt. The dried leaves of E. pallida were collected and heated at 55 and#176;C in deionized water, and filtered, and the leaf extract was treated with AgNO3 to produce the Ep-AgNPs. The Ep-AgNPs were analyzed by Ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The characteristic hydroxyl gave the peak at 3147 cm-1. In UV-Vis analysis, observation of absorption band at 468 nm proved the achievement of Ep-AgNPs synthesis. SEM analysis presented the spherical shape of nanostructures with an average size of 77.82 nm. The face-centered crystal structure of Ep-AgNPs was revealed by the XRD analysis. The 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•) scavenging, ferric reducing antioxidant power (FRAP), 2,2and#39;-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+) assays were employed for antioxidant study in which Ep-AgNPs exhibited excellent antioxidant effect. Ep-AgNPs displayed outstanding DPPH• activity (6.34, IC50, and#181;g/ml) compared to the standard BHT (10.78, IC50, and#181;g/ml). The high activity was observed for ABTS•+ and reducing power assays as well. Hence, Ep-AgNPs could be a valuable material for the food and pharmaceutical industry.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biosynthesis of Silver Nanoparticles using Echinacea pallida (Nutt.) Nutt. and Antioxidant Activity Thereof\",\"authors\":\"Esma Nur Gecer and Ramazan Erenler Esma Nur Gecer and Ramazan Erenler\",\"doi\":\"10.52568/001187/jcsp/44.06.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, silver nanoparticles (Ep-AgNPs) were synthesised using Echinacea pallida (Nutt.) Nutt. The dried leaves of E. pallida were collected and heated at 55 and#176;C in deionized water, and filtered, and the leaf extract was treated with AgNO3 to produce the Ep-AgNPs. The Ep-AgNPs were analyzed by Ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The characteristic hydroxyl gave the peak at 3147 cm-1. In UV-Vis analysis, observation of absorption band at 468 nm proved the achievement of Ep-AgNPs synthesis. SEM analysis presented the spherical shape of nanostructures with an average size of 77.82 nm. The face-centered crystal structure of Ep-AgNPs was revealed by the XRD analysis. The 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•) scavenging, ferric reducing antioxidant power (FRAP), 2,2and#39;-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+) assays were employed for antioxidant study in which Ep-AgNPs exhibited excellent antioxidant effect. Ep-AgNPs displayed outstanding DPPH• activity (6.34, IC50, and#181;g/ml) compared to the standard BHT (10.78, IC50, and#181;g/ml). The high activity was observed for ABTS•+ and reducing power assays as well. Hence, Ep-AgNPs could be a valuable material for the food and pharmaceutical industry.\",\"PeriodicalId\":17253,\"journal\":{\"name\":\"Journal of the chemical society of pakistan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the chemical society of pakistan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.52568/001187/jcsp/44.06.2022\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001187/jcsp/44.06.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biosynthesis of Silver Nanoparticles using Echinacea pallida (Nutt.) Nutt. and Antioxidant Activity Thereof
In this work, silver nanoparticles (Ep-AgNPs) were synthesised using Echinacea pallida (Nutt.) Nutt. The dried leaves of E. pallida were collected and heated at 55 and#176;C in deionized water, and filtered, and the leaf extract was treated with AgNO3 to produce the Ep-AgNPs. The Ep-AgNPs were analyzed by Ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The characteristic hydroxyl gave the peak at 3147 cm-1. In UV-Vis analysis, observation of absorption band at 468 nm proved the achievement of Ep-AgNPs synthesis. SEM analysis presented the spherical shape of nanostructures with an average size of 77.82 nm. The face-centered crystal structure of Ep-AgNPs was revealed by the XRD analysis. The 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•) scavenging, ferric reducing antioxidant power (FRAP), 2,2and#39;-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+) assays were employed for antioxidant study in which Ep-AgNPs exhibited excellent antioxidant effect. Ep-AgNPs displayed outstanding DPPH• activity (6.34, IC50, and#181;g/ml) compared to the standard BHT (10.78, IC50, and#181;g/ml). The high activity was observed for ABTS•+ and reducing power assays as well. Hence, Ep-AgNPs could be a valuable material for the food and pharmaceutical industry.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.