恒定接种下离散垂直和水平传播疾病模型的动态行为

Mingshan Li, Xiumin Liu, Xiaoliang Zhou
{"title":"恒定接种下离散垂直和水平传播疾病模型的动态行为","authors":"Mingshan Li, Xiumin Liu, Xiaoliang Zhou","doi":"10.4236/IJMNTA.2016.54017","DOIUrl":null,"url":null,"abstract":"In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"05 1","pages":"171-184"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Dynamic Behavior of a Discrete Vertical and Horizontal Transmitted Disease Model under Constant Vaccination\",\"authors\":\"Mingshan Li, Xiumin Liu, Xiaoliang Zhou\",\"doi\":\"10.4236/IJMNTA.2016.54017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"05 1\",\"pages\":\"171-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.54017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.54017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了恒定接种条件下的一类离散的垂直和水平传播疾病模型。在种群规模不变的假设下,将模型转化为平面地图,求解出其均衡点和相应的特征值。通过讨论系数参数对特征值的影响,确定了平衡点的双曲性。通过得到中心流形上的流动方程,讨论了跨临界分岔和翻转分岔的方向和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dynamic Behavior of a Discrete Vertical and Horizontal Transmitted Disease Model under Constant Vaccination
In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信