S. S. Sajid Hussain, S. F. H. A. S. U. A. S F Hasany and Syed Usman Ali
{"title":"赤铁矿修饰MWCNT纳米杂化物:一种简便的合成方法","authors":"S. S. Sajid Hussain, S. F. H. A. S. U. A. S F Hasany and Syed Usman Ali","doi":"10.52568/001121/jcsp/44.05.2022","DOIUrl":null,"url":null,"abstract":"Hybrid nanomaterials with different sizes, shapes, compositions, and morphology have gained importance for numerous physicochemical, electrical and magnetic acumens. Multi-Walled Carbon nanotubes (MWCNTs) can be decorated with various metals to produce nanohybrids to attain desired features for leading high-tech applications. The presented research work comprises a cost- effective wet chemical method to fabricate Hematite based (α-Fe2O3- MWCNTs) nanohybrids. Physicochemical characteristics were studied by XRD, FTIR, SEM and VSM, and EDX, respectively. Results showed well-decorated hematite nanocrystals (size ~ 26nm) on the surface of MWCNTs. Magnetic behaviors exhibited a ferromagnetic material with saturation and remnant magnetization and coercivity of ~ 1.2 emu/g, 0.5 emu/g and 200 Oersted respectively, which makes it a suitable contender in advanced energy storage devices.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hematite Decorated MWCNT Nanohybrids: A Facile Synthesis\",\"authors\":\"S. S. Sajid Hussain, S. F. H. A. S. U. A. S F Hasany and Syed Usman Ali\",\"doi\":\"10.52568/001121/jcsp/44.05.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid nanomaterials with different sizes, shapes, compositions, and morphology have gained importance for numerous physicochemical, electrical and magnetic acumens. Multi-Walled Carbon nanotubes (MWCNTs) can be decorated with various metals to produce nanohybrids to attain desired features for leading high-tech applications. The presented research work comprises a cost- effective wet chemical method to fabricate Hematite based (α-Fe2O3- MWCNTs) nanohybrids. Physicochemical characteristics were studied by XRD, FTIR, SEM and VSM, and EDX, respectively. Results showed well-decorated hematite nanocrystals (size ~ 26nm) on the surface of MWCNTs. Magnetic behaviors exhibited a ferromagnetic material with saturation and remnant magnetization and coercivity of ~ 1.2 emu/g, 0.5 emu/g and 200 Oersted respectively, which makes it a suitable contender in advanced energy storage devices.\",\"PeriodicalId\":17253,\"journal\":{\"name\":\"Journal of the chemical society of pakistan\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the chemical society of pakistan\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.52568/001121/jcsp/44.05.2022\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001121/jcsp/44.05.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hematite Decorated MWCNT Nanohybrids: A Facile Synthesis
Hybrid nanomaterials with different sizes, shapes, compositions, and morphology have gained importance for numerous physicochemical, electrical and magnetic acumens. Multi-Walled Carbon nanotubes (MWCNTs) can be decorated with various metals to produce nanohybrids to attain desired features for leading high-tech applications. The presented research work comprises a cost- effective wet chemical method to fabricate Hematite based (α-Fe2O3- MWCNTs) nanohybrids. Physicochemical characteristics were studied by XRD, FTIR, SEM and VSM, and EDX, respectively. Results showed well-decorated hematite nanocrystals (size ~ 26nm) on the surface of MWCNTs. Magnetic behaviors exhibited a ferromagnetic material with saturation and remnant magnetization and coercivity of ~ 1.2 emu/g, 0.5 emu/g and 200 Oersted respectively, which makes it a suitable contender in advanced energy storage devices.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.