{"title":"具有延迟和最优控制的登革热儿童完美疫苗接种模型","authors":"Yanan Xue, L. Nie","doi":"10.4236/IJMNTA.2016.54014","DOIUrl":null,"url":null,"abstract":"A delayed mathematical model of Dengue dynamical transmission between vector mosquitoes and human, incorporating a control strategy of perfect pediatric vaccination is proposed in this paper. By some analytical skills, we obtain the existence of disease-free equilibria and endemic equilibrium, the necessary conditions of global asymptotical stability about two disease-free equilibria. Further, by Pontryagin’s maximum principle, we obtain the optimal control of the disease. Finally, numerical simulations are carried out to verify the correctness of the theoretical results and feasibility of the control measure.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Model of Perfect Pediatric Vaccination of Dengue with Delay and Optimal Control\",\"authors\":\"Yanan Xue, L. Nie\",\"doi\":\"10.4236/IJMNTA.2016.54014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A delayed mathematical model of Dengue dynamical transmission between vector mosquitoes and human, incorporating a control strategy of perfect pediatric vaccination is proposed in this paper. By some analytical skills, we obtain the existence of disease-free equilibria and endemic equilibrium, the necessary conditions of global asymptotical stability about two disease-free equilibria. Further, by Pontryagin’s maximum principle, we obtain the optimal control of the disease. Finally, numerical simulations are carried out to verify the correctness of the theoretical results and feasibility of the control measure.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.54014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.54014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Model of Perfect Pediatric Vaccination of Dengue with Delay and Optimal Control
A delayed mathematical model of Dengue dynamical transmission between vector mosquitoes and human, incorporating a control strategy of perfect pediatric vaccination is proposed in this paper. By some analytical skills, we obtain the existence of disease-free equilibria and endemic equilibrium, the necessary conditions of global asymptotical stability about two disease-free equilibria. Further, by Pontryagin’s maximum principle, we obtain the optimal control of the disease. Finally, numerical simulations are carried out to verify the correctness of the theoretical results and feasibility of the control measure.