平流方程两种空间离散化方案的比较研究

H. Bakodah
{"title":"平流方程两种空间离散化方案的比较研究","authors":"H. Bakodah","doi":"10.4236/IJMNTA.2016.51006","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a comparison of two spatial discretization schemes for the advection equation, namely the first finite difference method and the method of lines. The stability of the methods has been studied by Von Neumann method and with the matrix analysis. The methods are applied to a number of test problems to compare the accuracy and computational efficiency. We show that both discretization techniques approximate correctly solution of advection equation and compare their accuracy and performance.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"05 1","pages":"59-66"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Two Spatial Discretization Schemes for Advection Equation\",\"authors\":\"H. Bakodah\",\"doi\":\"10.4236/IJMNTA.2016.51006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a comparison of two spatial discretization schemes for the advection equation, namely the first finite difference method and the method of lines. The stability of the methods has been studied by Von Neumann method and with the matrix analysis. The methods are applied to a number of test problems to compare the accuracy and computational efficiency. We show that both discretization techniques approximate correctly solution of advection equation and compare their accuracy and performance.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"05 1\",\"pages\":\"59-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.51006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.51006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了平流方程的两种空间离散方法,即第一有限差分法和直线法。通过冯诺依曼方法和矩阵分析研究了该方法的稳定性。将该方法应用于若干测试问题,比较了其精度和计算效率。结果表明,两种离散化方法都能正确逼近平流方程的解,并对其精度和性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Two Spatial Discretization Schemes for Advection Equation
In this paper, we describe a comparison of two spatial discretization schemes for the advection equation, namely the first finite difference method and the method of lines. The stability of the methods has been studied by Von Neumann method and with the matrix analysis. The methods are applied to a number of test problems to compare the accuracy and computational efficiency. We show that both discretization techniques approximate correctly solution of advection equation and compare their accuracy and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信