{"title":"分数阶单机无穷母线电力系统的混沌及其自适应反演控制","authors":"Zhanhong Liang, Jinfeng Gao","doi":"10.4236/IJMNTA.2016.53013","DOIUrl":null,"url":null,"abstract":"This \npaper has numerically studied the dynamical behaviors of a fractional-order \nsingle-machine infinite-bus (FOSMIB) power system. Periodic motions, period- doubling \nbifurcations and chaotic attractors are observed in the FOSMIB power system. \nThe existence of chaotic behavior is affirmed by the positive largest Lyapunov \nexponent (LLE). Based on the fractional-order backstepping method, an adaptive \ncontroller is proposed to suppress chaos in the FOSMIB power system. Numerical \nsimulation results demonstrate the validity of the proposed controller.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Chaos in a Fractional-Order Single-Machine Infinite-Bus Power System and Its Adaptive Backstepping Control\",\"authors\":\"Zhanhong Liang, Jinfeng Gao\",\"doi\":\"10.4236/IJMNTA.2016.53013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This \\npaper has numerically studied the dynamical behaviors of a fractional-order \\nsingle-machine infinite-bus (FOSMIB) power system. Periodic motions, period- doubling \\nbifurcations and chaotic attractors are observed in the FOSMIB power system. \\nThe existence of chaotic behavior is affirmed by the positive largest Lyapunov \\nexponent (LLE). Based on the fractional-order backstepping method, an adaptive \\ncontroller is proposed to suppress chaos in the FOSMIB power system. Numerical \\nsimulation results demonstrate the validity of the proposed controller.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.53013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.53013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chaos in a Fractional-Order Single-Machine Infinite-Bus Power System and Its Adaptive Backstepping Control
This
paper has numerically studied the dynamical behaviors of a fractional-order
single-machine infinite-bus (FOSMIB) power system. Periodic motions, period- doubling
bifurcations and chaotic attractors are observed in the FOSMIB power system.
The existence of chaotic behavior is affirmed by the positive largest Lyapunov
exponent (LLE). Based on the fractional-order backstepping method, an adaptive
controller is proposed to suppress chaos in the FOSMIB power system. Numerical
simulation results demonstrate the validity of the proposed controller.