{"title":"一类三阶非线性微分方程组解收敛性的结果","authors":"A. Olutimo","doi":"10.4236/IJMNTA.2016.51005","DOIUrl":null,"url":null,"abstract":"Convergence \nbehaviors of solutions arising from certain system of third-order nonlinear \ndifferential equations are studied. Such convergence of solutions corresponding \nto extreme stability of solutions when relates a pair of solutions of the system considered. \nUsing suitable Lyapunov functionals, we prove that the solutions of the \nnonlinear differential equation are convergent. Result obtained generalizes and \nimproves some known results in the literature. Example is included to \nillustrate the result.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"5 1","pages":"48-58"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Result on the Convergence Behavior of Solutions of Certain System of Third-Order Nonlinear Differential Equations\",\"authors\":\"A. Olutimo\",\"doi\":\"10.4236/IJMNTA.2016.51005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convergence \\nbehaviors of solutions arising from certain system of third-order nonlinear \\ndifferential equations are studied. Such convergence of solutions corresponding \\nto extreme stability of solutions when relates a pair of solutions of the system considered. \\nUsing suitable Lyapunov functionals, we prove that the solutions of the \\nnonlinear differential equation are convergent. Result obtained generalizes and \\nimproves some known results in the literature. Example is included to \\nillustrate the result.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"5 1\",\"pages\":\"48-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.51005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.51005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Result on the Convergence Behavior of Solutions of Certain System of Third-Order Nonlinear Differential Equations
Convergence
behaviors of solutions arising from certain system of third-order nonlinear
differential equations are studied. Such convergence of solutions corresponding
to extreme stability of solutions when relates a pair of solutions of the system considered.
Using suitable Lyapunov functionals, we prove that the solutions of the
nonlinear differential equation are convergent. Result obtained generalizes and
improves some known results in the literature. Example is included to
illustrate the result.