一类三阶非线性微分方程组解收敛性的结果

A. Olutimo
{"title":"一类三阶非线性微分方程组解收敛性的结果","authors":"A. Olutimo","doi":"10.4236/IJMNTA.2016.51005","DOIUrl":null,"url":null,"abstract":"Convergence \nbehaviors of solutions arising from certain system of third-order nonlinear \ndifferential equations are studied. Such convergence of solutions corresponding \nto extreme stability of solutions when relates a pair of solutions of the system considered. \nUsing suitable Lyapunov functionals, we prove that the solutions of the \nnonlinear differential equation are convergent. Result obtained generalizes and \nimproves some known results in the literature. Example is included to \nillustrate the result.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"5 1","pages":"48-58"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Result on the Convergence Behavior of Solutions of Certain System of Third-Order Nonlinear Differential Equations\",\"authors\":\"A. Olutimo\",\"doi\":\"10.4236/IJMNTA.2016.51005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convergence \\nbehaviors of solutions arising from certain system of third-order nonlinear \\ndifferential equations are studied. Such convergence of solutions corresponding \\nto extreme stability of solutions when relates a pair of solutions of the system considered. \\nUsing suitable Lyapunov functionals, we prove that the solutions of the \\nnonlinear differential equation are convergent. Result obtained generalizes and \\nimproves some known results in the literature. Example is included to \\nillustrate the result.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"5 1\",\"pages\":\"48-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2016.51005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.51005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一类三阶非线性微分方程组解的收敛性。当涉及到所考虑的系统的一对解时,这种解的收敛性对应于解的极端稳定性。利用适当的李雅普诺夫泛函,证明了非线性微分方程的解是收敛的。所得结果推广和改进了文献中一些已知的结果。包括一个示例来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Result on the Convergence Behavior of Solutions of Certain System of Third-Order Nonlinear Differential Equations
Convergence behaviors of solutions arising from certain system of third-order nonlinear differential equations are studied. Such convergence of solutions corresponding to extreme stability of solutions when relates a pair of solutions of the system considered. Using suitable Lyapunov functionals, we prove that the solutions of the nonlinear differential equation are convergent. Result obtained generalizes and improves some known results in the literature. Example is included to illustrate the result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信