相点轨迹的尺寸

Kun Yao
{"title":"相点轨迹的尺寸","authors":"Kun Yao","doi":"10.4236/IJMNTA.2015.44019","DOIUrl":null,"url":null,"abstract":"In a physical system, phase point trajectory is impossible to be space-filling curve, of which the dimension is not greater than one. Equipotential map concept is proposed. When phase point trajectory dimension is 0, calculus tool is no longer applicable. System state can be changed instantly. When phase point trajectory dimension is 1, differential equation can be used to handle this case.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"22 1","pages":"249-253"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension of Phase Point Trajectory\",\"authors\":\"Kun Yao\",\"doi\":\"10.4236/IJMNTA.2015.44019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a physical system, phase point trajectory is impossible to be space-filling curve, of which the dimension is not greater than one. Equipotential map concept is proposed. When phase point trajectory dimension is 0, calculus tool is no longer applicable. System state can be changed instantly. When phase point trajectory dimension is 1, differential equation can be used to handle this case.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"22 1\",\"pages\":\"249-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2015.44019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2015.44019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在物理系统中,相点轨迹不可能是维数不大于1的空间填充曲线。提出了等势映射的概念。当相点轨迹维数为0时,微积分工具不再适用。系统状态可以瞬间改变。当相点轨迹维数为1时,可以用微分方程来处理这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension of Phase Point Trajectory
In a physical system, phase point trajectory is impossible to be space-filling curve, of which the dimension is not greater than one. Equipotential map concept is proposed. When phase point trajectory dimension is 0, calculus tool is no longer applicable. System state can be changed instantly. When phase point trajectory dimension is 1, differential equation can be used to handle this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信