{"title":"Riesz意义上有界变分函数空间中的一致有界集值复合算子","authors":"W. Aziz, N. Merentes","doi":"10.4236/IJMNTA.2015.44017","DOIUrl":null,"url":null,"abstract":"We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty bounded closed and convex values, are an affine function.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"04 1","pages":"226-233"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniformly Bounded Set-Valued Composition Operators in the Spaces of Functions of Bounded Variation in the Sense of Riesz\",\"authors\":\"W. Aziz, N. Merentes\",\"doi\":\"10.4236/IJMNTA.2015.44017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty bounded closed and convex values, are an affine function.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"04 1\",\"pages\":\"226-233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2015.44017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2015.44017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uniformly Bounded Set-Valued Composition Operators in the Spaces of Functions of Bounded Variation in the Sense of Riesz
We show that the lateral regularizations of the generator of any uniformly bounded set-valued composition Nemytskij operator acting in the spaces of functions of bounded variation in the sense of Riesz, with nonempty bounded closed and convex values, are an affine function.