{"title":"基于离散力学与非线性优化混合方法的圆规型两足机器人圆避障控制","authors":"T. Kai","doi":"10.4236/IJMNTA.2015.43013","DOIUrl":null,"url":null,"abstract":"This paper considers an obstacle avoidance control problem for the compass-type biped robot, especially circular obstacles are dealt with. First, a sufficient condition such that the swing leg does not collide the circular obstacle is derived. Next, an optimal control problem for the discrete compass-type robot is formulated and a solving method of the problem by the sequential quadratic programming is presented in order to calculate a discrete control input. Then, a transformation method that converts a discrete control input into a continuous zero-order hold input via discrete Lagrange-d’ Alembert principle is explained. From the results of numerical simulations, it turns out that obstacle avoidance control for the continuous compass-type robot can be achieved by the proposed method.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Circular Obstacle Avoidance Control of the Compass-Type Biped Robot Based on a Blending Method of Discrete Mechanics and Nonlinear Optimization\",\"authors\":\"T. Kai\",\"doi\":\"10.4236/IJMNTA.2015.43013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an obstacle avoidance control problem for the compass-type biped robot, especially circular obstacles are dealt with. First, a sufficient condition such that the swing leg does not collide the circular obstacle is derived. Next, an optimal control problem for the discrete compass-type robot is formulated and a solving method of the problem by the sequential quadratic programming is presented in order to calculate a discrete control input. Then, a transformation method that converts a discrete control input into a continuous zero-order hold input via discrete Lagrange-d’ Alembert principle is explained. From the results of numerical simulations, it turns out that obstacle avoidance control for the continuous compass-type robot can be achieved by the proposed method.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2015.43013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2015.43013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circular Obstacle Avoidance Control of the Compass-Type Biped Robot Based on a Blending Method of Discrete Mechanics and Nonlinear Optimization
This paper considers an obstacle avoidance control problem for the compass-type biped robot, especially circular obstacles are dealt with. First, a sufficient condition such that the swing leg does not collide the circular obstacle is derived. Next, an optimal control problem for the discrete compass-type robot is formulated and a solving method of the problem by the sequential quadratic programming is presented in order to calculate a discrete control input. Then, a transformation method that converts a discrete control input into a continuous zero-order hold input via discrete Lagrange-d’ Alembert principle is explained. From the results of numerical simulations, it turns out that obstacle avoidance control for the continuous compass-type robot can be achieved by the proposed method.