{"title":"基于奇异摄动技术的一般积分控制设计","authors":"Baishun Liu, Xiang-Qian Luo, Jian-Hui Li","doi":"10.4236/IJMNTA.2014.34019","DOIUrl":null,"url":null,"abstract":"This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. Its highlight point is that the error of integrator output can be used to stabilize the system, just like the system state, such that it does not need to take an extra and special effort to deal with the integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral controller, which is tuned by this design method, has super strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"General Integral Control Design via Singular Perturbation Technique\",\"authors\":\"Baishun Liu, Xiang-Qian Luo, Jian-Hui Li\",\"doi\":\"10.4236/IJMNTA.2014.34019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. Its highlight point is that the error of integrator output can be used to stabilize the system, just like the system state, such that it does not need to take an extra and special effort to deal with the integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral controller, which is tuned by this design method, has super strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2014.34019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2014.34019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General Integral Control Design via Singular Perturbation Technique
This paper proposes a systematic method to design general integral control with the generic integrator and integral control action. No longer resorting to an ordinary control along with a known Lyapunov function, but synthesizing singular perturbation technique, mean value theorem, stability theorem of interval matrix and Lyapunov method, a universal theorem to ensure regionally as well as semi-globally asymptotic stability is established in terms of some bounded information. Its highlight point is that the error of integrator output can be used to stabilize the system, just like the system state, such that it does not need to take an extra and special effort to deal with the integral dynamic. Theoretical analysis and simulation results demonstrated that: general integral controller, which is tuned by this design method, has super strong robustness and can deal with nonlinearity and uncertainties of dynamics more forcefully.