二维广义各向异性Kuramoto-Sivashinsky方程的全局吸引子和维数估计

Meixia Wang, Cuicui Tian, Guoguang Lin
{"title":"二维广义各向异性Kuramoto-Sivashinsky方程的全局吸引子和维数估计","authors":"Meixia Wang, Cuicui Tian, Guoguang Lin","doi":"10.4236/IJMNTA.2014.34018","DOIUrl":null,"url":null,"abstract":"In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solutions of a two dimensional generalized anisotropy Kuramoto-Sivashinsky Equation. Then we prove the existence of the global attractor. Finally, we get the upper bound estimation of the Haus-dorff and fractal dimension of attractor.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"03 1","pages":"163-172"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global Attractor and Dimension Estimation for a 2D Generalized Anisotropy Kuramoto-Sivashinsky Equation\",\"authors\":\"Meixia Wang, Cuicui Tian, Guoguang Lin\",\"doi\":\"10.4236/IJMNTA.2014.34018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solutions of a two dimensional generalized anisotropy Kuramoto-Sivashinsky Equation. Then we prove the existence of the global attractor. Finally, we get the upper bound estimation of the Haus-dorff and fractal dimension of attractor.\",\"PeriodicalId\":69680,\"journal\":{\"name\":\"现代非线性理论与应用(英文)\",\"volume\":\"03 1\",\"pages\":\"163-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代非线性理论与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/IJMNTA.2014.34018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2014.34018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文首先给出了二维广义各向异性Kuramoto-Sivashinsky方程解的存在唯一性的先验估计。然后证明了全局吸引子的存在性。最后给出了吸引子的Haus-dorff和分形维数的上界估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Attractor and Dimension Estimation for a 2D Generalized Anisotropy Kuramoto-Sivashinsky Equation
In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solutions of a two dimensional generalized anisotropy Kuramoto-Sivashinsky Equation. Then we prove the existence of the global attractor. Finally, we get the upper bound estimation of the Haus-dorff and fractal dimension of attractor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
111
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信