{"title":"基于学习自动机的无线传感器网络聚类覆盖方案","authors":"A. Ghaffari, S. Mousavi","doi":"10.52547/jist.9.35.197","DOIUrl":null,"url":null,"abstract":"Network coverage is one of the most important challenges in wireless sensor networks (WSNs). In a WSN, each sensor node has a sensing area coverage based on its sensing range. In most applications, sensor nodes are randomly deployed in the environment which causes the density of nodes become high in some areas and low in some other. In this case, some areas are not covered by none of sensor nodes which these areas are called coverage holes. Also, creating areas with high density leads to redundant overlapping and as a result the network lifetime decreases. In this paper, a cluster-based scheme for the coverage problem of WSNs using learning automata is proposed. In the proposed scheme, each node creates the action and probability vectors of learning automata for itself and its neighbors, then determines the status of itself and all its neighbors and finally sends them to the cluster head (CH). Afterward, each CH starts to reward or penalize the vectors and sends the results to the sender for updating purposes. Thereafter, among the sent vectors, the CH node selects the best action vector and broadcasts it in the form of a message inside the cluster. Finally, each member changes its status in accordance with the vector included in the received message from the corresponding CH and the active sensor nodes perform environment monitoring operations. The simulation results show that the proposed scheme improves the network coverage and the energy consumption.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-based Coverage Scheme for Wireless Sensor Networks using Learning\\n Automata\",\"authors\":\"A. Ghaffari, S. Mousavi\",\"doi\":\"10.52547/jist.9.35.197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network coverage is one of the most important challenges in wireless sensor networks (WSNs). In a WSN, each sensor node has a sensing area coverage based on its sensing range. In most applications, sensor nodes are randomly deployed in the environment which causes the density of nodes become high in some areas and low in some other. In this case, some areas are not covered by none of sensor nodes which these areas are called coverage holes. Also, creating areas with high density leads to redundant overlapping and as a result the network lifetime decreases. In this paper, a cluster-based scheme for the coverage problem of WSNs using learning automata is proposed. In the proposed scheme, each node creates the action and probability vectors of learning automata for itself and its neighbors, then determines the status of itself and all its neighbors and finally sends them to the cluster head (CH). Afterward, each CH starts to reward or penalize the vectors and sends the results to the sender for updating purposes. Thereafter, among the sent vectors, the CH node selects the best action vector and broadcasts it in the form of a message inside the cluster. Finally, each member changes its status in accordance with the vector included in the received message from the corresponding CH and the active sensor nodes perform environment monitoring operations. The simulation results show that the proposed scheme improves the network coverage and the energy consumption.\",\"PeriodicalId\":37681,\"journal\":{\"name\":\"Journal of Information Systems and Telecommunication\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Systems and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jist.9.35.197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jist.9.35.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Cluster-based Coverage Scheme for Wireless Sensor Networks using Learning
Automata
Network coverage is one of the most important challenges in wireless sensor networks (WSNs). In a WSN, each sensor node has a sensing area coverage based on its sensing range. In most applications, sensor nodes are randomly deployed in the environment which causes the density of nodes become high in some areas and low in some other. In this case, some areas are not covered by none of sensor nodes which these areas are called coverage holes. Also, creating areas with high density leads to redundant overlapping and as a result the network lifetime decreases. In this paper, a cluster-based scheme for the coverage problem of WSNs using learning automata is proposed. In the proposed scheme, each node creates the action and probability vectors of learning automata for itself and its neighbors, then determines the status of itself and all its neighbors and finally sends them to the cluster head (CH). Afterward, each CH starts to reward or penalize the vectors and sends the results to the sender for updating purposes. Thereafter, among the sent vectors, the CH node selects the best action vector and broadcasts it in the form of a message inside the cluster. Finally, each member changes its status in accordance with the vector included in the received message from the corresponding CH and the active sensor nodes perform environment monitoring operations. The simulation results show that the proposed scheme improves the network coverage and the energy consumption.
期刊介绍:
This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.