R. G, Prasanna G B, Santosh V Bhat, Chandrashekara Naik, C. H N
{"title":"基于PCA和SVM分类器的手写体卡纳达语数字识别方法","authors":"R. G, Prasanna G B, Santosh V Bhat, Chandrashekara Naik, C. H N","doi":"10.52547/jist.9.35.169","DOIUrl":null,"url":null,"abstract":"Handwritten digit recognition is one of the classical issues in the field of image grouping, a subfield of computer vision. The event of the handwritten digit is generous. With a wide opportunity, the issue of handwritten digit recognition by using computer vision and machine learning techniques has been a well-considered upon field. The field has gone through an exceptional turn of events, since the development of machine learning techniques. Utilizing the strategy for Support Vector Machine (SVM) and Principal Component Analysis (PCA), a robust and swift method to solve the problem of handwritten digit recognition, for the Kannada language is introduced. In this work, the Kannada-MNIST dataset is used for digit recognition to evaluate the performance of SVM and PCA. Efforts were made previously to recognize handwritten digits of different languages with this approach. However, due to the lack of a standard MNIST dataset for Kannada numerals, Kannada Handwritten digit recognition was left behind. With the introduction of the MNIST dataset for Kannada digits, we budge towards solving the problem statement and show how applying PCA for dimensionality reduction before using the SVM classifier increases the accuracy on the RBF kernel. 60,000 images are used for training and 10,000 images for testing the model and an accuracy of 99.02% on validation data and 95.44% on test data is achieved. Performance measures like Precision, Recall, and F1-score have been evaluated on the method used.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Method for Handwritten Kannada Digit Recognition based on PCA and SVM\\n Classifier\",\"authors\":\"R. G, Prasanna G B, Santosh V Bhat, Chandrashekara Naik, C. H N\",\"doi\":\"10.52547/jist.9.35.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Handwritten digit recognition is one of the classical issues in the field of image grouping, a subfield of computer vision. The event of the handwritten digit is generous. With a wide opportunity, the issue of handwritten digit recognition by using computer vision and machine learning techniques has been a well-considered upon field. The field has gone through an exceptional turn of events, since the development of machine learning techniques. Utilizing the strategy for Support Vector Machine (SVM) and Principal Component Analysis (PCA), a robust and swift method to solve the problem of handwritten digit recognition, for the Kannada language is introduced. In this work, the Kannada-MNIST dataset is used for digit recognition to evaluate the performance of SVM and PCA. Efforts were made previously to recognize handwritten digits of different languages with this approach. However, due to the lack of a standard MNIST dataset for Kannada numerals, Kannada Handwritten digit recognition was left behind. With the introduction of the MNIST dataset for Kannada digits, we budge towards solving the problem statement and show how applying PCA for dimensionality reduction before using the SVM classifier increases the accuracy on the RBF kernel. 60,000 images are used for training and 10,000 images for testing the model and an accuracy of 99.02% on validation data and 95.44% on test data is achieved. Performance measures like Precision, Recall, and F1-score have been evaluated on the method used.\",\"PeriodicalId\":37681,\"journal\":{\"name\":\"Journal of Information Systems and Telecommunication\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Systems and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/jist.9.35.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jist.9.35.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
An Efficient Method for Handwritten Kannada Digit Recognition based on PCA and SVM
Classifier
Handwritten digit recognition is one of the classical issues in the field of image grouping, a subfield of computer vision. The event of the handwritten digit is generous. With a wide opportunity, the issue of handwritten digit recognition by using computer vision and machine learning techniques has been a well-considered upon field. The field has gone through an exceptional turn of events, since the development of machine learning techniques. Utilizing the strategy for Support Vector Machine (SVM) and Principal Component Analysis (PCA), a robust and swift method to solve the problem of handwritten digit recognition, for the Kannada language is introduced. In this work, the Kannada-MNIST dataset is used for digit recognition to evaluate the performance of SVM and PCA. Efforts were made previously to recognize handwritten digits of different languages with this approach. However, due to the lack of a standard MNIST dataset for Kannada numerals, Kannada Handwritten digit recognition was left behind. With the introduction of the MNIST dataset for Kannada digits, we budge towards solving the problem statement and show how applying PCA for dimensionality reduction before using the SVM classifier increases the accuracy on the RBF kernel. 60,000 images are used for training and 10,000 images for testing the model and an accuracy of 99.02% on validation data and 95.44% on test data is achieved. Performance measures like Precision, Recall, and F1-score have been evaluated on the method used.
期刊介绍:
This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.