变质岩潜山构造特征及演化过程——以渤海湾BZ油田为例

Huaichang Zheng, Xuwei Bie, Xin-Qiang Song, Yong Jiang, Wencai Liu
{"title":"变质岩潜山构造特征及演化过程——以渤海湾BZ油田为例","authors":"Huaichang Zheng, Xuwei Bie, Xin-Qiang Song, Yong Jiang, Wencai Liu","doi":"10.4236/ijg.2022.131001","DOIUrl":null,"url":null,"abstract":"Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the distribution of fractures is very complex in this area, therefore it is significant to study the evolution of structures for understanding the distribution of fractures. In view of the complexity on the tectonic evolution of the buried hill region in the study area, the influence of tectonic movements on the formation of fractured reservoir is analyzed, and the research results lay the foundation for the efficient development in this type of the oilfield. The results show that main faults, which is formed during early Indosinian and Yanshanian period, are mainly developed in the BZ oilfield area, and the fracture strike has mainly east-west and north-east-east trend. Based on the analysis of the relationship among tectonic evolution, regional stress field and fracture development, it is considered that Indosinian extrusion is the main reason for the formation of main direction faults in the study area. Yanshanian strike-slip transformation and Himalayan reactivation further controlled the development of the fractured reservoirs in the later stage, and formed the present fracture network system. Well block 5 is located in passive plate system during Indosinian period, it is affected by Himalayan stretching and long-term activation of large faults in the later stage, so that the effective fractures are relatively developed. The result plays an important role in guiding the overall plan deployment of the BZ oilfield.","PeriodicalId":58825,"journal":{"name":"地球科学国际期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Characteristics and Evolution Process of the Metamorphic Buried Hill: A Case of BZ Oilfield in Bohai Bay, China\",\"authors\":\"Huaichang Zheng, Xuwei Bie, Xin-Qiang Song, Yong Jiang, Wencai Liu\",\"doi\":\"10.4236/ijg.2022.131001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the distribution of fractures is very complex in this area, therefore it is significant to study the evolution of structures for understanding the distribution of fractures. In view of the complexity on the tectonic evolution of the buried hill region in the study area, the influence of tectonic movements on the formation of fractured reservoir is analyzed, and the research results lay the foundation for the efficient development in this type of the oilfield. The results show that main faults, which is formed during early Indosinian and Yanshanian period, are mainly developed in the BZ oilfield area, and the fracture strike has mainly east-west and north-east-east trend. Based on the analysis of the relationship among tectonic evolution, regional stress field and fracture development, it is considered that Indosinian extrusion is the main reason for the formation of main direction faults in the study area. Yanshanian strike-slip transformation and Himalayan reactivation further controlled the development of the fractured reservoirs in the later stage, and formed the present fracture network system. Well block 5 is located in passive plate system during Indosinian period, it is affected by Himalayan stretching and long-term activation of large faults in the later stage, so that the effective fractures are relatively developed. The result plays an important role in guiding the overall plan deployment of the BZ oilfield.\",\"PeriodicalId\":58825,\"journal\":{\"name\":\"地球科学国际期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"地球科学国际期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ijg.2022.131001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"地球科学国际期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ijg.2022.131001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

渤中油田,简称BZ油田,是渤海湾地区第一个探明储量达十亿吨的深变质潜山油田。受多期构造运动的影响,本区裂缝分布十分复杂,因此研究构造演化对认识裂缝分布具有重要意义。针对研究区潜山地区构造演化的复杂性,分析了构造运动对裂缝性储层形成的影响,为该类型油田的高效开发奠定了基础。结果表明:BZ油区主要发育早印支期和燕山期形成的主断裂,裂缝走向以东-西、北-东走向为主;在分析构造演化、区域应力场与断裂发育关系的基础上,认为印支挤压作用是研究区主向断裂形成的主要原因。燕山期走滑改造和喜马拉雅期再活化进一步控制了裂缝性储层的后期发育,形成了现今的裂缝网络体系。5井区块在印支期处于被动板块体系,后期受喜马拉雅拉张和大断裂长期活化的影响,有效裂缝相对发育。研究结果对指导BZ油田总体规划部署具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Characteristics and Evolution Process of the Metamorphic Buried Hill: A Case of BZ Oilfield in Bohai Bay, China
Bozhong oilfield which is abbreviated as BZ oilfield is the first oilfield with deep metamorphic buried hill that is discovered reserves of billion-ton in Bohai Bay. Affected by multi-stage tectonic movements, the distribution of fractures is very complex in this area, therefore it is significant to study the evolution of structures for understanding the distribution of fractures. In view of the complexity on the tectonic evolution of the buried hill region in the study area, the influence of tectonic movements on the formation of fractured reservoir is analyzed, and the research results lay the foundation for the efficient development in this type of the oilfield. The results show that main faults, which is formed during early Indosinian and Yanshanian period, are mainly developed in the BZ oilfield area, and the fracture strike has mainly east-west and north-east-east trend. Based on the analysis of the relationship among tectonic evolution, regional stress field and fracture development, it is considered that Indosinian extrusion is the main reason for the formation of main direction faults in the study area. Yanshanian strike-slip transformation and Himalayan reactivation further controlled the development of the fractured reservoirs in the later stage, and formed the present fracture network system. Well block 5 is located in passive plate system during Indosinian period, it is affected by Himalayan stretching and long-term activation of large faults in the later stage, so that the effective fractures are relatively developed. The result plays an important role in guiding the overall plan deployment of the BZ oilfield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
856
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信