J. Kapusta, J. Gawinecki, Jarosław Łazuka, J. Rafa
{"title":"K-dron及其数学模型及其应用","authors":"J. Kapusta, J. Gawinecki, Jarosław Łazuka, J. Rafa","doi":"10.5604/12345865.1198014","DOIUrl":null,"url":null,"abstract":"Streszczenie W pracy przedstawiono pojęcie K-dronu, nowego kształtu geometrycznego odkrytego w 1985 roku w Nowym Jorku przez dr. Janusza Kapustę, historię jego odkrycia, związki z geometrią, symetrią sześcianu. Należy podkreślić, że autorzy wyprowadzili nowy wzór∗) na powierzchnie K-dronu, stosując metodę transformacji Laplace’a do wyznaczenia rozwiązania zagadnienia brzegowo-początkowego do równania drgań struny. Wyprowadzony wzór w swojej naturze jest bardziej czytelny ze wzlgędu na swoją strukturę. Otrzymane przez autorów w pracy rozwiązanie opisuje w sposób najbardziej ogólny powierzchnie K-dronu oraz bardziej ogólne powierzchnie nazwane przez autorów n-K-dronem. Wzór na powierzchnie K-dronu uzyskany metodą transformaty Laplace’a posiada przejrzystą interpretację geometryczną, ponieważ jest przedstawiony w postaci kombinacji liniowej równań płaszczyzn o współczynnikach kierunkowych określonych przez odpowiednie kombinacje funkcje Heaviside’a. Szeroko także przedstawiono różnorodne i wielorakie zastosowanie K-dronu.","PeriodicalId":9068,"journal":{"name":"Biuletyn Wojskowej Akademii Technicznej","volume":"65 1","pages":"169-202"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-dron, jego matematyczne modelowanie i zastosowanie\",\"authors\":\"J. Kapusta, J. Gawinecki, Jarosław Łazuka, J. Rafa\",\"doi\":\"10.5604/12345865.1198014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streszczenie W pracy przedstawiono pojęcie K-dronu, nowego kształtu geometrycznego odkrytego w 1985 roku w Nowym Jorku przez dr. Janusza Kapustę, historię jego odkrycia, związki z geometrią, symetrią sześcianu. Należy podkreślić, że autorzy wyprowadzili nowy wzór∗) na powierzchnie K-dronu, stosując metodę transformacji Laplace’a do wyznaczenia rozwiązania zagadnienia brzegowo-początkowego do równania drgań struny. Wyprowadzony wzór w swojej naturze jest bardziej czytelny ze wzlgędu na swoją strukturę. Otrzymane przez autorów w pracy rozwiązanie opisuje w sposób najbardziej ogólny powierzchnie K-dronu oraz bardziej ogólne powierzchnie nazwane przez autorów n-K-dronem. Wzór na powierzchnie K-dronu uzyskany metodą transformaty Laplace’a posiada przejrzystą interpretację geometryczną, ponieważ jest przedstawiony w postaci kombinacji liniowej równań płaszczyzn o współczynnikach kierunkowych określonych przez odpowiednie kombinacje funkcje Heaviside’a. Szeroko także przedstawiono różnorodne i wielorakie zastosowanie K-dronu.\",\"PeriodicalId\":9068,\"journal\":{\"name\":\"Biuletyn Wojskowej Akademii Technicznej\",\"volume\":\"65 1\",\"pages\":\"169-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biuletyn Wojskowej Akademii Technicznej\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/12345865.1198014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biuletyn Wojskowej Akademii Technicznej","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/12345865.1198014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
K-dron, jego matematyczne modelowanie i zastosowanie
Streszczenie W pracy przedstawiono pojęcie K-dronu, nowego kształtu geometrycznego odkrytego w 1985 roku w Nowym Jorku przez dr. Janusza Kapustę, historię jego odkrycia, związki z geometrią, symetrią sześcianu. Należy podkreślić, że autorzy wyprowadzili nowy wzór∗) na powierzchnie K-dronu, stosując metodę transformacji Laplace’a do wyznaczenia rozwiązania zagadnienia brzegowo-początkowego do równania drgań struny. Wyprowadzony wzór w swojej naturze jest bardziej czytelny ze wzlgędu na swoją strukturę. Otrzymane przez autorów w pracy rozwiązanie opisuje w sposób najbardziej ogólny powierzchnie K-dronu oraz bardziej ogólne powierzchnie nazwane przez autorów n-K-dronem. Wzór na powierzchnie K-dronu uzyskany metodą transformaty Laplace’a posiada przejrzystą interpretację geometryczną, ponieważ jest przedstawiony w postaci kombinacji liniowej równań płaszczyzn o współczynnikach kierunkowych określonych przez odpowiednie kombinacje funkcje Heaviside’a. Szeroko także przedstawiono różnorodne i wielorakie zastosowanie K-dronu.