基于体外人转录组学和体内大鼠临床化学数据的药物性肝损伤分类模型

D. Jennen, J. Polman, M. Bessem, Maarten Coonen, J. V. van Delft, J. Kleinjans
{"title":"基于体外人转录组学和体内大鼠临床化学数据的药物性肝损伤分类模型","authors":"D. Jennen, J. Polman, M. Bessem, Maarten Coonen, J. V. van Delft, J. Kleinjans","doi":"10.4161/sysb.29400","DOIUrl":null,"url":null,"abstract":"In this study, we developed a transcriptomics based human in vitro model for predicting DILI in humans. The transcriptomics data (Affymetrix GeneChip Human Genome U133 Plus 2.0) from primary human hepatocytes were provided by the Japanese Toxicogenomics Project (TGP). The selected compounds were divided into two groups, i.e., most-DILI and no-DILI, based on FDA-approved drug labels. The compounds were further grouped in a training and validation set. The training set, containing the most extreme most-DILI and no-DILI compounds based on the in vivo rat clinical chemistry measurements from TGP, was used to develop the prediction model. The validation set showed high accuracy (> 90%) and performed better than splitting the compounds into training and validation set randomly.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"71 1","pages":"63 - 70"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.29400","citationCount":"12","resultStr":"{\"title\":\"Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data\",\"authors\":\"D. Jennen, J. Polman, M. Bessem, Maarten Coonen, J. V. van Delft, J. Kleinjans\",\"doi\":\"10.4161/sysb.29400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we developed a transcriptomics based human in vitro model for predicting DILI in humans. The transcriptomics data (Affymetrix GeneChip Human Genome U133 Plus 2.0) from primary human hepatocytes were provided by the Japanese Toxicogenomics Project (TGP). The selected compounds were divided into two groups, i.e., most-DILI and no-DILI, based on FDA-approved drug labels. The compounds were further grouped in a training and validation set. The training set, containing the most extreme most-DILI and no-DILI compounds based on the in vivo rat clinical chemistry measurements from TGP, was used to develop the prediction model. The validation set showed high accuracy (> 90%) and performed better than splitting the compounds into training and validation set randomly.\",\"PeriodicalId\":90057,\"journal\":{\"name\":\"Systems biomedicine (Austin, Tex.)\",\"volume\":\"71 1\",\"pages\":\"63 - 70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/sysb.29400\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biomedicine (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/sysb.29400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.29400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项研究中,我们建立了一个基于转录组学的人类体外模型来预测人类DILI。原代人肝细胞的转录组学数据(Affymetrix GeneChip Human Genome U133 Plus 2.0)由日本毒物基因组学计划(TGP)提供。所选化合物根据fda批准的药物标签分为两组,即most-DILI和no-DILI。这些化合物进一步分组在一个训练和验证集。基于TGP的体内大鼠临床化学测量,我们使用包含最极端的dili和no-DILI化合物的训练集来建立预测模型。验证集具有较高的准确度(> 90%),优于将化合物随机分成训练集和验证集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drug-induced liver injury classification model based on in vitro human transcriptomics and in vivo rat clinical chemistry data
In this study, we developed a transcriptomics based human in vitro model for predicting DILI in humans. The transcriptomics data (Affymetrix GeneChip Human Genome U133 Plus 2.0) from primary human hepatocytes were provided by the Japanese Toxicogenomics Project (TGP). The selected compounds were divided into two groups, i.e., most-DILI and no-DILI, based on FDA-approved drug labels. The compounds were further grouped in a training and validation set. The training set, containing the most extreme most-DILI and no-DILI compounds based on the in vivo rat clinical chemistry measurements from TGP, was used to develop the prediction model. The validation set showed high accuracy (> 90%) and performed better than splitting the compounds into training and validation set randomly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信