基于基因表达数据的弹性网络逻辑回归的复发缓解型多发性硬化症分类

Cheng Zhao, A. Deshwar, Q. Morris
{"title":"基于基因表达数据的弹性网络逻辑回归的复发缓解型多发性硬化症分类","authors":"Cheng Zhao, A. Deshwar, Q. Morris","doi":"10.4161/sysb.26131","DOIUrl":null,"url":null,"abstract":"As part of the first Industrial Methodology for Process Verification in Research Challenge, the aim of the MS Diagnostic sub-challenge was to identify a robust diagnostic signature for relapsing-remitting multiple sclerosis from gene expression data. In this regard, we built a classifier that discriminates samples into two phenotype groups, either RRMS or controls, using the transcriptome of peripheral blood mononuclear cells. For our classifier, we used logistic regression with elastic net regression as implemented in the glmnet package in R. We selected the values of the regularization hyper-parameters using cross-validation performance on the provided training data, number of non-zero parameters in our model, and based on the distribution of output values when the input vector for the test data were used with our classifier. We analyzed our classifier performance with two different strategies for feature extraction, using either only genes or including additional constructed features from gene pathways data. The two different strategies produced little differences in performance when comparing the 10-fold cross-validation of the training data and prediction on the test data. Our final submission for the sub-challenge used only genes as features, and identified a diagnostic signature consisting of 58 genes, that was ranked second out of a total of 39 submissions.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"247 - 253"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.26131","citationCount":"8","resultStr":"{\"title\":\"Relapsing-remitting multiple sclerosis classification using elastic net logistic regression on gene expression data\",\"authors\":\"Cheng Zhao, A. Deshwar, Q. Morris\",\"doi\":\"10.4161/sysb.26131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the first Industrial Methodology for Process Verification in Research Challenge, the aim of the MS Diagnostic sub-challenge was to identify a robust diagnostic signature for relapsing-remitting multiple sclerosis from gene expression data. In this regard, we built a classifier that discriminates samples into two phenotype groups, either RRMS or controls, using the transcriptome of peripheral blood mononuclear cells. For our classifier, we used logistic regression with elastic net regression as implemented in the glmnet package in R. We selected the values of the regularization hyper-parameters using cross-validation performance on the provided training data, number of non-zero parameters in our model, and based on the distribution of output values when the input vector for the test data were used with our classifier. We analyzed our classifier performance with two different strategies for feature extraction, using either only genes or including additional constructed features from gene pathways data. The two different strategies produced little differences in performance when comparing the 10-fold cross-validation of the training data and prediction on the test data. Our final submission for the sub-challenge used only genes as features, and identified a diagnostic signature consisting of 58 genes, that was ranked second out of a total of 39 submissions.\",\"PeriodicalId\":90057,\"journal\":{\"name\":\"Systems biomedicine (Austin, Tex.)\",\"volume\":\"1 1\",\"pages\":\"247 - 253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/sysb.26131\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biomedicine (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/sysb.26131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.26131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

作为研究挑战中第一个过程验证工业方法的一部分,MS诊断子挑战的目的是从基因表达数据中确定复发缓解型多发性硬化症的可靠诊断特征。在这方面,我们建立了一个分类器,将样本区分为两个表型组,RRMS或对照组,使用外周血单核细胞的转录组。对于我们的分类器,我们使用了r中glmnet包实现的逻辑回归和弹性网络回归。我们通过对提供的训练数据的交叉验证性能、模型中非零参数的数量以及当测试数据的输入向量与我们的分类器一起使用时,基于输出值的分布来选择正则化超参数的值。我们用两种不同的特征提取策略来分析分类器的性能,要么只使用基因,要么包括来自基因通路数据的额外构建的特征。在对训练数据和测试数据的预测进行10倍交叉验证时,两种不同的策略在性能上的差异很小。我们最终提交的子挑战仅使用基因作为特征,并确定了由58个基因组成的诊断签名,该签名在总共39个提交的文件中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relapsing-remitting multiple sclerosis classification using elastic net logistic regression on gene expression data
As part of the first Industrial Methodology for Process Verification in Research Challenge, the aim of the MS Diagnostic sub-challenge was to identify a robust diagnostic signature for relapsing-remitting multiple sclerosis from gene expression data. In this regard, we built a classifier that discriminates samples into two phenotype groups, either RRMS or controls, using the transcriptome of peripheral blood mononuclear cells. For our classifier, we used logistic regression with elastic net regression as implemented in the glmnet package in R. We selected the values of the regularization hyper-parameters using cross-validation performance on the provided training data, number of non-zero parameters in our model, and based on the distribution of output values when the input vector for the test data were used with our classifier. We analyzed our classifier performance with two different strategies for feature extraction, using either only genes or including additional constructed features from gene pathways data. The two different strategies produced little differences in performance when comparing the 10-fold cross-validation of the training data and prediction on the test data. Our final submission for the sub-challenge used only genes as features, and identified a diagnostic signature consisting of 58 genes, that was ranked second out of a total of 39 submissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信