崩塌数据对微阵列分析和DILI预测的影响

Jean-François Pessiot, P. Wong, T. Maruyama, R. Morioka, S. Aburatani, Michihiro Tanaka, W. Fujibuchi
{"title":"崩塌数据对微阵列分析和DILI预测的影响","authors":"Jean-François Pessiot, P. Wong, T. Maruyama, R. Morioka, S. Aburatani, Michihiro Tanaka, W. Fujibuchi","doi":"10.4161/sysb.24255","DOIUrl":null,"url":null,"abstract":"In this work, we focus on two fundamental problems of toxicogenomics using the data provided by the Japanese toxicogenomics project. First, we analyze to what extent animal studies can be replaced by in in vitro assays. We show that the probeset-level representation achieves poor agreement between in vivo and in vitro data. We present a data collapsing approach to resolve poor data agreement between in vivo and in vitro data, as measured by GSEA analysis and AUC scores. Second, we address the difficult problem of predicting DILI using available microarray data. Using a binary classification framework, our results suggest that rat in vivo data are more informative than human in vitro data to predict DILI.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"137 - 143"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.24255","citationCount":"6","resultStr":"{\"title\":\"The impact of collapsing data on microarray analysis and DILI prediction\",\"authors\":\"Jean-François Pessiot, P. Wong, T. Maruyama, R. Morioka, S. Aburatani, Michihiro Tanaka, W. Fujibuchi\",\"doi\":\"10.4161/sysb.24255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we focus on two fundamental problems of toxicogenomics using the data provided by the Japanese toxicogenomics project. First, we analyze to what extent animal studies can be replaced by in in vitro assays. We show that the probeset-level representation achieves poor agreement between in vivo and in vitro data. We present a data collapsing approach to resolve poor data agreement between in vivo and in vitro data, as measured by GSEA analysis and AUC scores. Second, we address the difficult problem of predicting DILI using available microarray data. Using a binary classification framework, our results suggest that rat in vivo data are more informative than human in vitro data to predict DILI.\",\"PeriodicalId\":90057,\"journal\":{\"name\":\"Systems biomedicine (Austin, Tex.)\",\"volume\":\"1 1\",\"pages\":\"137 - 143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4161/sysb.24255\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biomedicine (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4161/sysb.24255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.24255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这项工作中,我们利用日本毒物基因组学项目提供的数据,重点关注毒物基因组学的两个基本问题。首先,我们分析了体外实验在多大程度上可以取代动物实验。我们表明,问题级表示在体内和体外数据之间实现了较差的一致性。我们提出了一种数据折叠方法来解决体内和体外数据之间不一致的数据,通过GSEA分析和AUC评分来衡量。其次,我们解决了使用可用的微阵列数据预测DILI的难题。使用二元分类框架,我们的结果表明,大鼠体内数据比人类体外数据更能预测DILI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of collapsing data on microarray analysis and DILI prediction
In this work, we focus on two fundamental problems of toxicogenomics using the data provided by the Japanese toxicogenomics project. First, we analyze to what extent animal studies can be replaced by in in vitro assays. We show that the probeset-level representation achieves poor agreement between in vivo and in vitro data. We present a data collapsing approach to resolve poor data agreement between in vivo and in vitro data, as measured by GSEA analysis and AUC scores. Second, we address the difficult problem of predicting DILI using available microarray data. Using a binary classification framework, our results suggest that rat in vivo data are more informative than human in vitro data to predict DILI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信