关于模块Erdös-Burgess常量

Jun Hao, Haoli Wang, Lizhen Zhang
{"title":"关于模块Erdös-Burgess常量","authors":"Jun Hao, Haoli Wang, Lizhen Zhang","doi":"10.4236/OJDM.2019.91003","DOIUrl":null,"url":null,"abstract":"Let n be a positive integer. For any integer a, we say that is idempotent modulo n if a2≡a(mod n). The n-modular Erdos-Burgess constant is the smallest positive integer l such that any l integers contain one or more integers, whose product is idempotent modulo n. We gave a sharp lower bound of the n-modular Erdos-Burgess constant, in particular, we determined the n-modular Erdos-Burgess constant in the case when n was a prime power or a product of pairwise distinct primes.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Modular Erdös-Burgess Constant\",\"authors\":\"Jun Hao, Haoli Wang, Lizhen Zhang\",\"doi\":\"10.4236/OJDM.2019.91003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n be a positive integer. For any integer a, we say that is idempotent modulo n if a2≡a(mod n). The n-modular Erdos-Burgess constant is the smallest positive integer l such that any l integers contain one or more integers, whose product is idempotent modulo n. We gave a sharp lower bound of the n-modular Erdos-Burgess constant, in particular, we determined the n-modular Erdos-Burgess constant in the case when n was a prime power or a product of pairwise distinct primes.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2019.91003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2019.91003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设n为正整数。对于任意整数a,如果a2≡a(对n取模),我们说它是幂等模n。n模Erdos-Burgess常数是最小的正整数l,使得任意l整数包含一个或多个整数,其乘积为幂等模n。我们给出了n模Erdos-Burgess常数的一个明显下界,特别地,我们确定了n是素数幂或两两不同素数积的情况下的n模Erdos-Burgess常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Modular Erdös-Burgess Constant
Let n be a positive integer. For any integer a, we say that is idempotent modulo n if a2≡a(mod n). The n-modular Erdos-Burgess constant is the smallest positive integer l such that any l integers contain one or more integers, whose product is idempotent modulo n. We gave a sharp lower bound of the n-modular Erdos-Burgess constant, in particular, we determined the n-modular Erdos-Burgess constant in the case when n was a prime power or a product of pairwise distinct primes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信