具有k-树的图的破裂度

Yinkui Li, Qingning Wang, Xiaolin Wang
{"title":"具有k-树的图的破裂度","authors":"Yinkui Li, Qingning Wang, Xiaolin Wang","doi":"10.4236/OJDM.2016.62011","DOIUrl":null,"url":null,"abstract":"A k-tree of a connected graph G is a spanning tree with maximum degree \nat most k. The rupture degree for a \nconnected graph G is defined by , where and , \nrespectively, denote the order of the largest component and number of \ncomponents in . In this \npaper, we show that for a connected graph G, \nif  for any cut-set , then G has a k-tree.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"105-107"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rupture Degree of Graphs with k-Tree\",\"authors\":\"Yinkui Li, Qingning Wang, Xiaolin Wang\",\"doi\":\"10.4236/OJDM.2016.62011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A k-tree of a connected graph G is a spanning tree with maximum degree \\nat most k. The rupture degree for a \\nconnected graph G is defined by , where and , \\nrespectively, denote the order of the largest component and number of \\ncomponents in . In this \\npaper, we show that for a connected graph G, \\nif  for any cut-set , then G has a k-tree.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"105-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2016.62011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.62011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连通图G的k树是最大度不超过k的生成树。连通图G的断裂度定义为,其中和分别表示中最大分量的阶数和分量的个数。本文证明了对于连通图G,如果对于任意切集,则G有k树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rupture Degree of Graphs with k-Tree
A k-tree of a connected graph G is a spanning tree with maximum degree at most k. The rupture degree for a connected graph G is defined by , where and , respectively, denote the order of the largest component and number of components in . In this paper, we show that for a connected graph G, if  for any cut-set , then G has a k-tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信