分布抛物型系统的扩大梯度可观测性:HUM方法

Hayat Zouiten, A. Boutoulout, F. E. Alaoui
{"title":"分布抛物型系统的扩大梯度可观测性:HUM方法","authors":"Hayat Zouiten, A. Boutoulout, F. E. Alaoui","doi":"10.4236/ICA.2017.81002","DOIUrl":null,"url":null,"abstract":"This paper is focused on studying an important concept of the system analysis, which is the regional enlarged observability or constrained observability of the gradient for distributed parabolic systems evolving in the spatial domain Ω We will explore an approach based on the Hilbert Uniqueness Method (HUM), which can reconstruct the initial gradient state between two prescribed functions f1 and f2 only in a critical subregion ω of Ω without the knowledge of the state. Finally, the obtained results are illustrated by numerical simulations.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":"08 1","pages":"15-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enlarged Gradient Observability for Distributed Parabolic Systems: HUM Approach\",\"authors\":\"Hayat Zouiten, A. Boutoulout, F. E. Alaoui\",\"doi\":\"10.4236/ICA.2017.81002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on studying an important concept of the system analysis, which is the regional enlarged observability or constrained observability of the gradient for distributed parabolic systems evolving in the spatial domain Ω We will explore an approach based on the Hilbert Uniqueness Method (HUM), which can reconstruct the initial gradient state between two prescribed functions f1 and f2 only in a critical subregion ω of Ω without the knowledge of the state. Finally, the obtained results are illustrated by numerical simulations.\",\"PeriodicalId\":62904,\"journal\":{\"name\":\"智能控制与自动化(英文)\",\"volume\":\"08 1\",\"pages\":\"15-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能控制与自动化(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ICA.2017.81002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ICA.2017.81002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文重点研究了系统分析中的一个重要概念,即在空间域内演化的分布式抛物系统的梯度的区域扩大可观测性或约束可观测性。我们将探索一种基于Hilbert唯一性方法(HUM)的方法,该方法可以在不知道状态的情况下,仅在Ω的临界子区域Ω中重建两个规定函数f1和f2之间的初始梯度状态。最后,通过数值模拟对所得结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enlarged Gradient Observability for Distributed Parabolic Systems: HUM Approach
This paper is focused on studying an important concept of the system analysis, which is the regional enlarged observability or constrained observability of the gradient for distributed parabolic systems evolving in the spatial domain Ω We will explore an approach based on the Hilbert Uniqueness Method (HUM), which can reconstruct the initial gradient state between two prescribed functions f1 and f2 only in a critical subregion ω of Ω without the knowledge of the state. Finally, the obtained results are illustrated by numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
243
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信