双错乱排列

Pooya Daneshmand, Kamyar Mirzavaziri, M. Mirzavaziri
{"title":"双错乱排列","authors":"Pooya Daneshmand, Kamyar Mirzavaziri, M. Mirzavaziri","doi":"10.4236/OJDM.2016.62010","DOIUrl":null,"url":null,"abstract":"Let n be a positive integer. A permutation a of the symmetric group  of permutations of  is called a derangement if   for each . Suppose that x and y are two arbitrary permutations of . We say that a \npermutation a is a double \nderangement with respect to x and y if  and  for each . In this paper, we give an explicit formula for , the number of double \nderangements with respect to x and y. \nLet  and let  and  be two subsets of  with  and . Suppose that  denotes the number of derangements x such that . As the main result, \nwe show that if  and z is a permutation such that  for  and  for , then  where .","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"99-104"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double Derangement Permutations\",\"authors\":\"Pooya Daneshmand, Kamyar Mirzavaziri, M. Mirzavaziri\",\"doi\":\"10.4236/OJDM.2016.62010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let n be a positive integer. A permutation a of the symmetric group  of permutations of  is called a derangement if   for each . Suppose that x and y are two arbitrary permutations of . We say that a \\npermutation a is a double \\nderangement with respect to x and y if  and  for each . In this paper, we give an explicit formula for , the number of double \\nderangements with respect to x and y. \\nLet  and let  and  be two subsets of  with  and . Suppose that  denotes the number of derangements x such that . As the main result, \\nwe show that if  and z is a permutation such that  for  and  for , then  where .\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"99-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2016.62010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.62010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设n为正整数。的对称排列群中的排列A称为无序,如果对每一个。假设x和y是两个任意的排列。我们说一个排列a是一个关于x和y的二重排列,如果且对于每一个。本文给出了关于x和y的二重错乱数目的一个显式公式。令、令和是与和的两个子集。假设它表示排列的数量x,使得。作为主要结果,我们证明了如果和z是一个排列,使得for和for,那么在哪里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double Derangement Permutations
Let n be a positive integer. A permutation a of the symmetric group  of permutations of  is called a derangement if   for each . Suppose that x and y are two arbitrary permutations of . We say that a permutation a is a double derangement with respect to x and y if  and  for each . In this paper, we give an explicit formula for , the number of double derangements with respect to x and y. Let  and let  and  be two subsets of  with  and . Suppose that  denotes the number of derangements x such that . As the main result, we show that if  and z is a permutation such that  for  and  for , then  where .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信