三角形的离散微分几何与埃舍尔风格的戏法艺术

Naoto Morikawa
{"title":"三角形的离散微分几何与埃舍尔风格的戏法艺术","authors":"Naoto Morikawa","doi":"10.4236/OJDM.2016.63013","DOIUrl":null,"url":null,"abstract":"This paper shows the usefulness of discrete differential geometry in global analysis. Using the discrete differential geometry of triangles, we could consider the global structure of closed trajectories (of triangles) on a triangular mesh consisting of congruent isosceles triangles. As an example, we perform global analysis of an Escher-style trick art, i.e., a simpler version of “Ascending and Descending”. After defining the local structure on the trick art, we analyze its global structure and attribute its paradox to a singular point (i.e., a singular triangle) at the center. Then, the endless “Penrose stairs” is described as a closed trajectory around the isolated singular point. The approach fits well with graphical projection and gives a simple and intuitive example of the interaction between global and local structures. We could deal with higher dimensional objects as well by considering n-simplices (n > 2) instead of triangles.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"161-166"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Discrete Differential Geometry of Triangles and Escher-Style Trick Art\",\"authors\":\"Naoto Morikawa\",\"doi\":\"10.4236/OJDM.2016.63013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows the usefulness of discrete differential geometry in global analysis. Using the discrete differential geometry of triangles, we could consider the global structure of closed trajectories (of triangles) on a triangular mesh consisting of congruent isosceles triangles. As an example, we perform global analysis of an Escher-style trick art, i.e., a simpler version of “Ascending and Descending”. After defining the local structure on the trick art, we analyze its global structure and attribute its paradox to a singular point (i.e., a singular triangle) at the center. Then, the endless “Penrose stairs” is described as a closed trajectory around the isolated singular point. The approach fits well with graphical projection and gives a simple and intuitive example of the interaction between global and local structures. We could deal with higher dimensional objects as well by considering n-simplices (n > 2) instead of triangles.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"161-166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2016.63013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.63013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文证明了离散微分几何在全局分析中的作用。利用三角形的离散微分几何,我们可以考虑全等等腰三角形组成的三角形网格上(三角形)闭合轨迹的整体结构。作为一个例子,我们对escher风格的技巧艺术进行全局分析,即“升降法”的简单版本。在定义了魔术艺术的局部结构后,分析了魔术艺术的全局结构,并将其悖论归结为魔术艺术中心的一个奇异点(即奇异三角形)。然后,无尽的“彭罗斯楼梯”被描述为围绕孤立的奇点的封闭轨迹。该方法非常适合图形投影,并提供了全局和局部结构之间相互作用的简单直观的示例。我们也可以处理高维对象通过考虑n-简单体(n >2)而不是三角形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Differential Geometry of Triangles and Escher-Style Trick Art
This paper shows the usefulness of discrete differential geometry in global analysis. Using the discrete differential geometry of triangles, we could consider the global structure of closed trajectories (of triangles) on a triangular mesh consisting of congruent isosceles triangles. As an example, we perform global analysis of an Escher-style trick art, i.e., a simpler version of “Ascending and Descending”. After defining the local structure on the trick art, we analyze its global structure and attribute its paradox to a singular point (i.e., a singular triangle) at the center. Then, the endless “Penrose stairs” is described as a closed trajectory around the isolated singular point. The approach fits well with graphical projection and gives a simple and intuitive example of the interaction between global and local structures. We could deal with higher dimensional objects as well by considering n-simplices (n > 2) instead of triangles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信