若干循环相关图的边积亲切标记

U. M. Prajapati, N. B. Patel
{"title":"若干循环相关图的边积亲切标记","authors":"U. M. Prajapati, N. B. Patel","doi":"10.4236/OJDM.2016.64023","DOIUrl":null,"url":null,"abstract":"For a graph having no isolated vertex, a function is called an edge product cordial labeling of graph G, if the induced vertex labeling function defined by the product of labels of incident edges to each vertex is such that the number of edges with label 0 and the number of edges with label 1 differ by at most 1 and the number of vertices with label 0 and the number of vertices with label 1 also differ by at most 1. In this paper, we discuss edge product cordial labeling for some cycle related graphs.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"268-278"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Edge Product Cordial Labeling of Some Cycle Related Graphs\",\"authors\":\"U. M. Prajapati, N. B. Patel\",\"doi\":\"10.4236/OJDM.2016.64023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph having no isolated vertex, a function is called an edge product cordial labeling of graph G, if the induced vertex labeling function defined by the product of labels of incident edges to each vertex is such that the number of edges with label 0 and the number of edges with label 1 differ by at most 1 and the number of vertices with label 0 and the number of vertices with label 1 also differ by at most 1. In this paper, we discuss edge product cordial labeling for some cycle related graphs.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"268-278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2016.64023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.64023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

图没有孤立的顶点,调用一个函数的优势产品的亲切标签图G,如果诱导顶点标识函数定义的产品标签事件边缘的每个顶点的边的数量与标签与标签1 0和边的数量最多相差1和顶点的数量与标签0和顶点的数量与标签1也最多相差1。本文讨论了一些环相关图的边积亲切标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Product Cordial Labeling of Some Cycle Related Graphs
For a graph having no isolated vertex, a function is called an edge product cordial labeling of graph G, if the induced vertex labeling function defined by the product of labels of incident edges to each vertex is such that the number of edges with label 0 and the number of edges with label 1 differ by at most 1 and the number of vertices with label 0 and the number of vertices with label 1 also differ by at most 1. In this paper, we discuss edge product cordial labeling for some cycle related graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信