循环的笛卡尔积的平方的支配数

M. Alishahi, Sakineh Hoseini Shalmaee
{"title":"循环的笛卡尔积的平方的支配数","authors":"M. Alishahi, Sakineh Hoseini Shalmaee","doi":"10.4236/OJDM.2015.54008","DOIUrl":null,"url":null,"abstract":"A set  is a dominating set of G if every vertex of  is adjacent to at least one vertex of S. The cardinality of the smallest \ndominating set of G is called the \ndomination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 \nin G. In this paper we study the \ndomination number of square of graphs, find a bound for domination number of \nsquare of Cartesian product of cycles, and find the exact value for some of \nthem.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"05 1","pages":"88-94"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Domination Number of Square of Cartesian Products of Cycles\",\"authors\":\"M. Alishahi, Sakineh Hoseini Shalmaee\",\"doi\":\"10.4236/OJDM.2015.54008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set  is a dominating set of G if every vertex of  is adjacent to at least one vertex of S. The cardinality of the smallest \\ndominating set of G is called the \\ndomination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 \\nin G. In this paper we study the \\ndomination number of square of graphs, find a bound for domination number of \\nsquare of Cartesian product of cycles, and find the exact value for some of \\nthem.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"05 1\",\"pages\":\"88-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2015.54008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2015.54008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一组是一组主导的G如果每个顶点相邻的至少一个顶点的s G的最小支配集的基数是叫统治的G .广场G2的图G是获得G通过添加新的边缘每两个顶点之间有距离2 G在本文中,我们研究了统治的平方数图,找到一个开往统治广场的笛卡儿积的循环次数,并找到其中一些的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domination Number of Square of Cartesian Products of Cycles
A set  is a dominating set of G if every vertex of  is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 in G. In this paper we study the domination number of square of graphs, find a bound for domination number of square of Cartesian product of cycles, and find the exact value for some of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信