双线性抛物型系统的约束反馈镇定

A. Tsouli, A. Boutoulout, A. E. Alami
{"title":"双线性抛物型系统的约束反馈镇定","authors":"A. Tsouli, A. Boutoulout, A. E. Alami","doi":"10.4236/ICA.2015.62011","DOIUrl":null,"url":null,"abstract":"In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constrained Feedback Stabilization for Bilinear Parabolic Systems\",\"authors\":\"A. Tsouli, A. Boutoulout, A. E. Alami\",\"doi\":\"10.4236/ICA.2015.62011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.\",\"PeriodicalId\":62904,\"journal\":{\"name\":\"智能控制与自动化(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能控制与自动化(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ICA.2015.62011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ICA.2015.62011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了Hilbert状态空间上双线性抛物型系统的约束反馈控制的镇定性和鲁棒性。然后,我们将证明镇定这样一个系统只在它在合适的子空间上的投影上减少镇定。为此,给出了一种新的约束稳定反馈控制,该控制允许对稳定状态进行多项式衰减估计。此外,还讨论了所考虑的控制的鲁棒性。给出了一个实例和仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constrained Feedback Stabilization for Bilinear Parabolic Systems
In this paper, we shall study the stabilization and the robustness of a constrained feedback control for bilinear parabolic systems defined on a Hilbert state space. Then, we shall show that stabilizing such a system reduces stabilization only in its projection on a suitable subspace. For this purpose, a new constrained stabilizing feedback control that allows a polynomial decay estimate of the stabilized state is given. Also, the robustness of the considered control is discussed. An illustrating example and simulations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
243
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信