VARTM增强碳纤维复合材料面外导热系数的预测

J. Schuster, M. Schütz, Johannes Lutz, L. Lempert
{"title":"VARTM增强碳纤维复合材料面外导热系数的预测","authors":"J. Schuster, M. Schütz, Johannes Lutz, L. Lempert","doi":"10.4236/OJCM.2016.64010","DOIUrl":null,"url":null,"abstract":"The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"100-111"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of the Enhanced Out-of-Plane Thermal Conductivity of Carbon Fiber Composites Produced by VARTM\",\"authors\":\"J. Schuster, M. Schütz, Johannes Lutz, L. Lempert\",\"doi\":\"10.4236/OJCM.2016.64010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.\",\"PeriodicalId\":57868,\"journal\":{\"name\":\"复合材料期刊(英文)\",\"volume\":\"06 1\",\"pages\":\"100-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复合材料期刊(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/OJCM.2016.64010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复合材料期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/OJCM.2016.64010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过加载高导电性颗粒,环氧树脂的导热性可以提高8到10倍。然而,较高的负载增加了树脂的粘度,阻碍了其用于液体复合成型工艺。因此,通过VARTM制备的碳复合材料的面外导热系数的增强被限制在250%左右。为了得到更高的面外热导率的增加,必须采取额外的措施。这些包括使用3d编织工艺在预制体的平面外方向引入导热纤维。与典型的层压复合材料相比,3d编织物复合材料的面外热导率显着增加。研究表明,如果引入高导电性的z-纤维,则无需使用颗粒填充树脂,并且由于上述制造问题应避免使用。改变了现有的分析模型,以预测有效导热系数作为复合材料性能的函数,如纤维在面内和面外方向的导热系数和体积含量、负载树脂的导热系数、面外纤维的网格密度以及接触材料的材料性能。预测结果与实测值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Enhanced Out-of-Plane Thermal Conductivity of Carbon Fiber Composites Produced by VARTM
The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信