{"title":"基于多光子容忍量子协议的量子通信压缩编码","authors":"Rasha El Hajj, P. Verma, K. W. Chan","doi":"10.5121/ijcis.2016.6202","DOIUrl":null,"url":null,"abstract":"This paper presents a new encryption scheme called Compact Coding that encodes information in time, phase, and intensity domains, simultaneously. While these approaches have previously been used one at a time, the proposed scheme brings to bear for the first time their strengths simultaneously leading to an increase in the secure information transfer rate. The proposed scheme is applicable to both optical fibers and free space optics, and can be considered as an alternative to polarization coding. This paper applies the proposed compact coding scheme to multi-photon tolerant quantum protocols in order to produce quantum-level security during information transfer. We present the structure of the proposed coding scheme in a multi-photon environment and address its operation.","PeriodicalId":54966,"journal":{"name":"International Journal of Cooperative Information Systems","volume":"6 1","pages":"23-40"},"PeriodicalIF":0.5000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Coding Using Multi-Photon Tolerant Quantum Protocols For Quantum Communication\",\"authors\":\"Rasha El Hajj, P. Verma, K. W. Chan\",\"doi\":\"10.5121/ijcis.2016.6202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new encryption scheme called Compact Coding that encodes information in time, phase, and intensity domains, simultaneously. While these approaches have previously been used one at a time, the proposed scheme brings to bear for the first time their strengths simultaneously leading to an increase in the secure information transfer rate. The proposed scheme is applicable to both optical fibers and free space optics, and can be considered as an alternative to polarization coding. This paper applies the proposed compact coding scheme to multi-photon tolerant quantum protocols in order to produce quantum-level security during information transfer. We present the structure of the proposed coding scheme in a multi-photon environment and address its operation.\",\"PeriodicalId\":54966,\"journal\":{\"name\":\"International Journal of Cooperative Information Systems\",\"volume\":\"6 1\",\"pages\":\"23-40\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cooperative Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5121/ijcis.2016.6202\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cooperative Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5121/ijcis.2016.6202","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Compact Coding Using Multi-Photon Tolerant Quantum Protocols For Quantum Communication
This paper presents a new encryption scheme called Compact Coding that encodes information in time, phase, and intensity domains, simultaneously. While these approaches have previously been used one at a time, the proposed scheme brings to bear for the first time their strengths simultaneously leading to an increase in the secure information transfer rate. The proposed scheme is applicable to both optical fibers and free space optics, and can be considered as an alternative to polarization coding. This paper applies the proposed compact coding scheme to multi-photon tolerant quantum protocols in order to produce quantum-level security during information transfer. We present the structure of the proposed coding scheme in a multi-photon environment and address its operation.
期刊介绍:
The paradigm for the next generation of information systems (ISs) will involve large numbers of ISs distributed over large, complex computer/communication networks. Such ISs will manage or have access to large amounts of information and computing services and will interoperate as required. These support individual or collaborative human work. Communication among component systems will be done using protocols that range from conventional ones to those based on distributed AI. We call such next generation ISs Cooperative Information Systems (CIS).
The International Journal of Cooperative Information Systems (IJCIS) addresses the intricacies of cooperative work in the framework of distributed interoperable information systems. It provides a forum for the presentation and dissemination of research covering all aspects of CIS design, requirements, functionality, implementation, deployment, and evolution.