共变、结构与概化:因果认知的基石

Q3 Psychology
R. A. Murphy, Esther Mondragón, V. Murphy
{"title":"共变、结构与概化:因果认知的基石","authors":"R. A. Murphy, Esther Mondragón, V. Murphy","doi":"10.46867/ijcp.2009.22.01.01","DOIUrl":null,"url":null,"abstract":"Theories of causal cognition describe how animals code cognitive primitives such as causal strength, directionality of relations, and other variables that allow inferences on the effect of interventions on causal links. We argue that these primitives and importantly causal generalization can be studied within an animal learning framework. Causal maps and other Bayesian approaches provide a normative framework for studying causal cognition, and associative theory provides algorithms for computing the acquisition of data-driven causal knowledge.","PeriodicalId":39712,"journal":{"name":"International Journal of Comparative Psychology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Covariation, Structure and Generalization: Building Blocks of Causal Cognition\",\"authors\":\"R. A. Murphy, Esther Mondragón, V. Murphy\",\"doi\":\"10.46867/ijcp.2009.22.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theories of causal cognition describe how animals code cognitive primitives such as causal strength, directionality of relations, and other variables that allow inferences on the effect of interventions on causal links. We argue that these primitives and importantly causal generalization can be studied within an animal learning framework. Causal maps and other Bayesian approaches provide a normative framework for studying causal cognition, and associative theory provides algorithms for computing the acquisition of data-driven causal knowledge.\",\"PeriodicalId\":39712,\"journal\":{\"name\":\"International Journal of Comparative Psychology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Comparative Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46867/ijcp.2009.22.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Comparative Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46867/ijcp.2009.22.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 1

摘要

因果认知理论描述了动物如何编码认知原语,如因果强度、关系的方向性和其他变量,这些变量允许对干预对因果联系的影响进行推断。我们认为这些原语和重要的因果泛化可以在动物学习框架内进行研究。因果图和其他贝叶斯方法为研究因果认知提供了一个规范框架,而关联理论为计算数据驱动的因果知识的获取提供了算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariation, Structure and Generalization: Building Blocks of Causal Cognition
Theories of causal cognition describe how animals code cognitive primitives such as causal strength, directionality of relations, and other variables that allow inferences on the effect of interventions on causal links. We argue that these primitives and importantly causal generalization can be studied within an animal learning framework. Causal maps and other Bayesian approaches provide a normative framework for studying causal cognition, and associative theory provides algorithms for computing the acquisition of data-driven causal knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信