高动态范围成像曝光融合中的鬼影和噪声去除

Q4 Mathematics
Dong-Kyu Lee, Rae-Hong Park, Soonkeun Chang
{"title":"高动态范围成像曝光融合中的鬼影和噪声去除","authors":"Dong-Kyu Lee, Rae-Hong Park, Soonkeun Chang","doi":"10.5121/IJCGA.2014.4401","DOIUrl":null,"url":null,"abstract":"For producing a single high dynamic range image (HDRI), multiple low dynamic range images (LDRIs) are captured with different exposures and combined. In high dynamic range (HDR) imaging, local motion of objects and noise in a set of LDRIs can influence a final HDRI: local motion of objects causes the ghost artifact and LDRIs, especially captured with under-exposure, make the final HDRI noisy. In this paper, we propose a ghost and noise removal method for HDRI using exposure fusion with subband architecture, in which Haar wavelet filter is used. The proposed method blends weight map of exposure fusion in the subband pyramid, where the weight map is produced for ghost artifact removal as well as exposure fusion. Then, the noise is removed using multi-resolution bilateral filtering. After removing the ghost artifact and noise in subband images, details of the images are enhanced using a gain control map. Experimental results with various sets of LDRIs show that the proposed method effectively removes the ghost artifact and noise, enhancing the contrast in a final HDRI.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"4 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJCGA.2014.4401","citationCount":"4","resultStr":"{\"title\":\"GHOST AND NOISE REMOVAL IN EXPOSURE FUSION FOR HIGH DYNAMIC RANGE IMAGING\",\"authors\":\"Dong-Kyu Lee, Rae-Hong Park, Soonkeun Chang\",\"doi\":\"10.5121/IJCGA.2014.4401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For producing a single high dynamic range image (HDRI), multiple low dynamic range images (LDRIs) are captured with different exposures and combined. In high dynamic range (HDR) imaging, local motion of objects and noise in a set of LDRIs can influence a final HDRI: local motion of objects causes the ghost artifact and LDRIs, especially captured with under-exposure, make the final HDRI noisy. In this paper, we propose a ghost and noise removal method for HDRI using exposure fusion with subband architecture, in which Haar wavelet filter is used. The proposed method blends weight map of exposure fusion in the subband pyramid, where the weight map is produced for ghost artifact removal as well as exposure fusion. Then, the noise is removed using multi-resolution bilateral filtering. After removing the ghost artifact and noise in subband images, details of the images are enhanced using a gain control map. Experimental results with various sets of LDRIs show that the proposed method effectively removes the ghost artifact and noise, enhancing the contrast in a final HDRI.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"4 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/IJCGA.2014.4401\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJCGA.2014.4401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJCGA.2014.4401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

为了生成单个高动态范围图像(HDRI),需要以不同的曝光捕获多个低动态范围图像(ldri)并进行组合。在高动态范围(HDR)成像中,一组ldri中物体的局部运动和噪声会影响最终的HDRI:物体的局部运动会产生鬼影,而ldri,特别是在曝光不足的情况下拍摄,会使最终的HDRI产生噪声。本文提出了一种基于曝光融合和子带结构的HDRI消噪方法,该方法采用Haar小波滤波。该方法在子带金字塔中混合曝光融合的权重图,在子带金字塔中生成用于去除鬼影和曝光融合的权重图。然后,采用多分辨率双边滤波去除噪声。在去除子带图像中的伪影和噪声后,使用增益控制映射增强图像的细节。不同ldri集的实验结果表明,该方法有效地去除了伪影和噪声,增强了最终HDRI的对比度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GHOST AND NOISE REMOVAL IN EXPOSURE FUSION FOR HIGH DYNAMIC RANGE IMAGING
For producing a single high dynamic range image (HDRI), multiple low dynamic range images (LDRIs) are captured with different exposures and combined. In high dynamic range (HDR) imaging, local motion of objects and noise in a set of LDRIs can influence a final HDRI: local motion of objects causes the ghost artifact and LDRIs, especially captured with under-exposure, make the final HDRI noisy. In this paper, we propose a ghost and noise removal method for HDRI using exposure fusion with subband architecture, in which Haar wavelet filter is used. The proposed method blends weight map of exposure fusion in the subband pyramid, where the weight map is produced for ghost artifact removal as well as exposure fusion. Then, the noise is removed using multi-resolution bilateral filtering. After removing the ghost artifact and noise in subband images, details of the images are enhanced using a gain control map. Experimental results with various sets of LDRIs show that the proposed method effectively removes the ghost artifact and noise, enhancing the contrast in a final HDRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信