开普勒三角及其近亲

T. Sugimoto
{"title":"开普勒三角及其近亲","authors":"T. Sugimoto","doi":"10.5047/forma.2020.001","DOIUrl":null,"url":null,"abstract":"The Kepler triangle, also known as the golden right triangle, is the right triangle with its sides of ratios ‘1 : φ1/2 : φ,’ where φ denotes the golden ratio. Also known are the silver right triangle and the square-rootthree φ right triangle. This study introduces the generalised golden right triangle, which have sides of lengths closely related to φ and the Fibonacci numbers, Fn: ‘(Fn−2) : φn/2 : (Fn)φ’ for any natural number n. This formalism covers all the known φ-related right triangle, i.e., the Kepler triangle and its kin. As n tends to infinity, the ratios of the sides go to ‘φ−1 : 51/4 : φ.’ Our model plays an important role in the classroom to study the golden ratio, the Fibonacci numbers and the Pythagorean theorem.","PeriodicalId":43563,"journal":{"name":"Forma-Revista d Estudis Comparatius Art Literatura Pensament","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Kepler Triangle and Its Kin\",\"authors\":\"T. Sugimoto\",\"doi\":\"10.5047/forma.2020.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kepler triangle, also known as the golden right triangle, is the right triangle with its sides of ratios ‘1 : φ1/2 : φ,’ where φ denotes the golden ratio. Also known are the silver right triangle and the square-rootthree φ right triangle. This study introduces the generalised golden right triangle, which have sides of lengths closely related to φ and the Fibonacci numbers, Fn: ‘(Fn−2) : φn/2 : (Fn)φ’ for any natural number n. This formalism covers all the known φ-related right triangle, i.e., the Kepler triangle and its kin. As n tends to infinity, the ratios of the sides go to ‘φ−1 : 51/4 : φ.’ Our model plays an important role in the classroom to study the golden ratio, the Fibonacci numbers and the Pythagorean theorem.\",\"PeriodicalId\":43563,\"journal\":{\"name\":\"Forma-Revista d Estudis Comparatius Art Literatura Pensament\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forma-Revista d Estudis Comparatius Art Literatura Pensament\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5047/forma.2020.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forma-Revista d Estudis Comparatius Art Literatura Pensament","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5047/forma.2020.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

开普勒三角形,也被称为黄金直角三角形,是一个边长比为“1:φ1/2: φ”的直角三角形,其中φ代表黄金比例。也被称为银直角三角形和根号三φ直角三角形。本文介绍了广义金直角三角形,它的边长与φ和斐波那契数Fn: ' (Fn−2):φn/2: (Fn)φ '密切相关,适用于任何自然数n。这种形式涵盖了所有已知的与φ相关的直角三角形,即开普勒三角形及其亲属。当n趋于无穷时,边长之比为φ - 1:51 /4: φ。“我们的模型在学习黄金比例、斐波那契数列和勾股定理的课堂上发挥了重要作用。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Kepler Triangle and Its Kin
The Kepler triangle, also known as the golden right triangle, is the right triangle with its sides of ratios ‘1 : φ1/2 : φ,’ where φ denotes the golden ratio. Also known are the silver right triangle and the square-rootthree φ right triangle. This study introduces the generalised golden right triangle, which have sides of lengths closely related to φ and the Fibonacci numbers, Fn: ‘(Fn−2) : φn/2 : (Fn)φ’ for any natural number n. This formalism covers all the known φ-related right triangle, i.e., the Kepler triangle and its kin. As n tends to infinity, the ratios of the sides go to ‘φ−1 : 51/4 : φ.’ Our model plays an important role in the classroom to study the golden ratio, the Fibonacci numbers and the Pythagorean theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信