关于汉克尔行列式的一些结果

IF 1 Q1 MATHEMATICS
B. Örnek
{"title":"关于汉克尔行列式的一些结果","authors":"B. Örnek","doi":"10.46793/kgjmat2303.481o","DOIUrl":null,"url":null,"abstract":". In this paper, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for K ( α ) class. Also, for the function f ( z ) = z + c 2 z 2 + c 3 z 3 + · · · defined in the unit disc such that f ∈ K ( α ), we estimate a modulus of the angular derivative of f ( z ) function at the boundary point z 0 with f ( z 0 ) = z 0 1+ α and f 0 ( z 0 ) = 1 1+ α . That is, we shall give an estimate below | f 00 ( z 0 ) | according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z 1 6 = 0. The sharpness of this inequality is also proved.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Results Concerned with Hankel Determinant\",\"authors\":\"B. Örnek\",\"doi\":\"10.46793/kgjmat2303.481o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for K ( α ) class. Also, for the function f ( z ) = z + c 2 z 2 + c 3 z 3 + · · · defined in the unit disc such that f ∈ K ( α ), we estimate a modulus of the angular derivative of f ( z ) function at the boundary point z 0 with f ( z 0 ) = z 0 1+ α and f 0 ( z 0 ) = 1 1+ α . That is, we shall give an estimate below | f 00 ( z 0 ) | according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z 1 6 = 0. The sharpness of this inequality is also proved.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2303.481o\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.481o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 本文讨论了K (α)类的边界Schwarz引理和Hankel行列式的不同形式。此外,对于函数f (z) = z + c2z2 + c3z3 +···在单位圆盘中定义,使得f∈K (α),我们估计f (z)函数的角导数在边界点z0处的模,f (z0) = z0 1+ α, f0 (z0) = 11 1+ α。即根据约为两个零的第一个非零泰勒系数,即z = 0和z16 = 0,给出一个低于|的估计f00 (z0) |。这个不等式的尖锐性也得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results Concerned with Hankel Determinant
. In this paper, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for K ( α ) class. Also, for the function f ( z ) = z + c 2 z 2 + c 3 z 3 + · · · defined in the unit disc such that f ∈ K ( α ), we estimate a modulus of the angular derivative of f ( z ) function at the boundary point z 0 with f ( z 0 ) = z 0 1+ α and f 0 ( z 0 ) = 1 1+ α . That is, we shall give an estimate below | f 00 ( z 0 ) | according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z 1 6 = 0. The sharpness of this inequality is also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信