平衡损失函数下James-Stein估计风险比的极小值和极限

IF 1 Q1 MATHEMATICS
Abdenour Hamdaoui, A. Benkhaled, M. Terbeche
{"title":"平衡损失函数下James-Stein估计风险比的极小值和极限","authors":"Abdenour Hamdaoui, A. Benkhaled, M. Terbeche","doi":"10.46793/kgjmat2303.459h","DOIUrl":null,"url":null,"abstract":"The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. Under the balanced loss function, we establish the minimaxity of the James-Stein estimator. When the dimension of the parameters space and the sample size tend to infinity, we study the asymptotic behavior of risks ratio of James-Stein estimator to the maximum likelihood estimator. The positive-part of James-Stein estimator is also treated.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimaxity and Limit of Risks Ratio of James-Stein Estimator Under the Balanced Loss Function\",\"authors\":\"Abdenour Hamdaoui, A. Benkhaled, M. Terbeche\",\"doi\":\"10.46793/kgjmat2303.459h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. Under the balanced loss function, we establish the minimaxity of the James-Stein estimator. When the dimension of the parameters space and the sample size tend to infinity, we study the asymptotic behavior of risks ratio of James-Stein estimator to the maximum likelihood estimator. The positive-part of James-Stein estimator is also treated.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2303.459h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.459h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了用不同类型的收缩估计器估计多元正态分布均值的问题。在平衡损失函数下,我们建立了James-Stein估计量的极小值。当参数空间的维数和样本量趋于无穷时,我们研究了James-Stein估计量对极大似然估计量的风险比的渐近行为。本文还讨论了James-Stein估计量的正部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Minimaxity and Limit of Risks Ratio of James-Stein Estimator Under the Balanced Loss Function
The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. Under the balanced loss function, we establish the minimaxity of the James-Stein estimator. When the dimension of the parameters space and the sample size tend to infinity, we study the asymptotic behavior of risks ratio of James-Stein estimator to the maximum likelihood estimator. The positive-part of James-Stein estimator is also treated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信