对于导数属于Lp([A, b])的函数的一个基于参数的OSTROWSKI型不等式

IF 1 Q1 MATHEMATICS
S. Kermausuor
{"title":"对于导数属于Lp([A, b])的函数的一个基于参数的OSTROWSKI型不等式","authors":"S. Kermausuor","doi":"10.46793/kgjmat2303.445k","DOIUrl":null,"url":null,"abstract":"A new generalization of Ostrowski’s inequality for functions whose derivatives belong to Lp([a, b]) (1 ≤ p < ∞) for k points via a parameter is provided. Some particular integral inequalities are derived as by products. Our results generalize some results in the literature.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A PARAMETER-BASED OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS WHOSE DERIVATIVES BELONGS TO Lp([a, b]) INVOLVING MULTIPLE POINTS\",\"authors\":\"S. Kermausuor\",\"doi\":\"10.46793/kgjmat2303.445k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new generalization of Ostrowski’s inequality for functions whose derivatives belong to Lp([a, b]) (1 ≤ p < ∞) for k points via a parameter is provided. Some particular integral inequalities are derived as by products. Our results generalize some results in the literature.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2303.445k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.445k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过一个参数,对k个点的导数属于Lp([A, b])(1≤p <∞)的函数,给出了Ostrowski不等式的新推广。一些特殊的积分不等式是由副乘积导出的。我们的结果概括了文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PARAMETER-BASED OSTROWSKI TYPE INEQUALITY FOR FUNCTIONS WHOSE DERIVATIVES BELONGS TO Lp([a, b]) INVOLVING MULTIPLE POINTS
A new generalization of Ostrowski’s inequality for functions whose derivatives belong to Lp([a, b]) (1 ≤ p < ∞) for k points via a parameter is provided. Some particular integral inequalities are derived as by products. Our results generalize some results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信