季节性合作系统的几乎周期性解

IF 0.7 4区 数学 Q2 MATHEMATICS
H. Díaz-Marín, F. J. López-Hernández, O. Osuna
{"title":"季节性合作系统的几乎周期性解","authors":"H. Díaz-Marín, F. J. López-Hernández, O. Osuna","doi":"10.4064/ap210128-19-8","DOIUrl":null,"url":null,"abstract":"We present a criterion for the existence of a stable almost periodic solution for a cooperative almost periodic system. We also give conditions under which there is global stability of this almost periodic solution in a certain domain. We apply our results to systems arising from cell volume growth with almost periodic growth factors, and to systems arising from Michaelis–Menten formalism modeling enzyme kinetics with an almost periodic substrate input and an almost periodic enzyme replacement.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"32 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Almost periodic solutions for seasonal cooperative systems\",\"authors\":\"H. Díaz-Marín, F. J. López-Hernández, O. Osuna\",\"doi\":\"10.4064/ap210128-19-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a criterion for the existence of a stable almost periodic solution for a cooperative almost periodic system. We also give conditions under which there is global stability of this almost periodic solution in a certain domain. We apply our results to systems arising from cell volume growth with almost periodic growth factors, and to systems arising from Michaelis–Menten formalism modeling enzyme kinetics with an almost periodic substrate input and an almost periodic enzyme replacement.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap210128-19-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap210128-19-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

给出了一类合作概周期系统稳定概周期解存在的一个判据。给出了该概周期解在某定义域上全局稳定的条件。我们将我们的结果应用于几乎具有周期性生长因子的细胞体积生长产生的系统,以及几乎具有周期性底物输入和几乎周期性酶替换的Michaelis-Menten形式建模酶动力学产生的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost periodic solutions for seasonal cooperative systems
We present a criterion for the existence of a stable almost periodic solution for a cooperative almost periodic system. We also give conditions under which there is global stability of this almost periodic solution in a certain domain. We apply our results to systems arising from cell volume growth with almost periodic growth factors, and to systems arising from Michaelis–Menten formalism modeling enzyme kinetics with an almost periodic substrate input and an almost periodic enzyme replacement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信