一般傅里叶系数和可求和性问题

IF 0.7 4区 数学 Q2 MATHEMATICS
G. Cagareishvili
{"title":"一般傅里叶系数和可求和性问题","authors":"G. Cagareishvili","doi":"10.4064/ap200731-23-10","DOIUrl":null,"url":null,"abstract":". S. Banach proved that for any L 2 function, there exists an orthonormal system such that the Fourier series of this function is not Cesàro summable a.e. In this paper, we present sufficient conditions that must be satisfied by functions of an orthonormal system so that the Fourier coefficients of any function of bounded variation satisfy the conditions of the Menshov–Kaczmarz theorem. The results obtained are the best possible in a certain sense. We also prove that any orthonormal system contains a subsystem for which the Fourier series of functions of bounded variation are Cesàro summable a.e. These results generalize those of L. Gogoladze and V. Tsagareishvili [Studia Sci. Math. Hungar. 52 (2015), 511–536].","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"General Fourier coefficients and problems of summability almost everywhere\",\"authors\":\"G. Cagareishvili\",\"doi\":\"10.4064/ap200731-23-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". S. Banach proved that for any L 2 function, there exists an orthonormal system such that the Fourier series of this function is not Cesàro summable a.e. In this paper, we present sufficient conditions that must be satisfied by functions of an orthonormal system so that the Fourier coefficients of any function of bounded variation satisfy the conditions of the Menshov–Kaczmarz theorem. The results obtained are the best possible in a certain sense. We also prove that any orthonormal system contains a subsystem for which the Fourier series of functions of bounded variation are Cesàro summable a.e. These results generalize those of L. Gogoladze and V. Tsagareishvili [Studia Sci. Math. Hungar. 52 (2015), 511–536].\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap200731-23-10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap200731-23-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

. S. Banach证明了对于任意l2函数,存在一个标准正交系统,使得该函数的傅里叶级数不Cesàro可和。本文给出了一个标准正交系统的函数必须满足的充分条件,使得任何有界变分函数的傅里叶系数满足Menshov-Kaczmarz定理的条件。所得到的结果在某种意义上是最好的。我们还证明了任何标准正交系统都包含一个子系统,其中有界变分函数的傅里叶级数是Cesàro可和的。这些结果推广了L. Gogoladze和V. Tsagareishvili [Studia Sci]的结果。数学。匈牙利,52(2015),511-536。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Fourier coefficients and problems of summability almost everywhere
. S. Banach proved that for any L 2 function, there exists an orthonormal system such that the Fourier series of this function is not Cesàro summable a.e. In this paper, we present sufficient conditions that must be satisfied by functions of an orthonormal system so that the Fourier coefficients of any function of bounded variation satisfy the conditions of the Menshov–Kaczmarz theorem. The results obtained are the best possible in a certain sense. We also prove that any orthonormal system contains a subsystem for which the Fourier series of functions of bounded variation are Cesàro summable a.e. These results generalize those of L. Gogoladze and V. Tsagareishvili [Studia Sci. Math. Hungar. 52 (2015), 511–536].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信