平均场方程的平凡解和非平凡解的对称性

IF 0.7 4区 数学 Q2 MATHEMATICS
Jiaming Jin, Chuanxi Zhu
{"title":"平均场方程的平凡解和非平凡解的对称性","authors":"Jiaming Jin, Chuanxi Zhu","doi":"10.4064/ap191126-30-6","DOIUrl":null,"url":null,"abstract":"We consider the mean field equation α 2 ∆gu+ e u − 1 = 0 on S. We show that under some technical conditions, u has to be constantly zero for 1/3 ≤ α < 1. In particular, this is the case if u(x) = −u(−x) and u is odd symmetric about a plane. In the cases u(x) = −u(−x) with 1/3 ≤ α < 1 and u(x) = u(−x) with 1/4 ≤ α < 1, we analyze the additional symmetries of the nontrivial solution in detail.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trivial solution and symmetries of nontrivial solutions to a mean field equation\",\"authors\":\"Jiaming Jin, Chuanxi Zhu\",\"doi\":\"10.4064/ap191126-30-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the mean field equation α 2 ∆gu+ e u − 1 = 0 on S. We show that under some technical conditions, u has to be constantly zero for 1/3 ≤ α < 1. In particular, this is the case if u(x) = −u(−x) and u is odd symmetric about a plane. In the cases u(x) = −u(−x) with 1/3 ≤ α < 1 and u(x) = u(−x) with 1/4 ≤ α < 1, we analyze the additional symmetries of the nontrivial solution in detail.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap191126-30-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap191126-30-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑s上的平均场方程α 2∆gu+ e u−1 = 0,并证明在某些技术条件下,当1/3≤α < 1时,u必须一直为零。特别地,这是当u(x) = - u(- x)并且u是奇对称平面的情况。在u(x) = - u(- x)且1/3≤α < 1和u(x) = u(- x)且1/4≤α < 1的情况下,详细分析了非平凡解的附加对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trivial solution and symmetries of nontrivial solutions to a mean field equation
We consider the mean field equation α 2 ∆gu+ e u − 1 = 0 on S. We show that under some technical conditions, u has to be constantly zero for 1/3 ≤ α < 1. In particular, this is the case if u(x) = −u(−x) and u is odd symmetric about a plane. In the cases u(x) = −u(−x) with 1/3 ≤ α < 1 and u(x) = u(−x) with 1/4 ≤ α < 1, we analyze the additional symmetries of the nontrivial solution in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信