整数系数多项式的格:$L_2(0,1)$的连续极小值

IF 0.7 4区 数学 Q2 MATHEMATICS
W. Banaszczyk
{"title":"整数系数多项式的格:$L_2(0,1)$的连续极小值","authors":"W. Banaszczyk","doi":"10.4064/ap190413-20-10","DOIUrl":null,"url":null,"abstract":". Let P Z n be the additive subgroup of the real Hilbert space L 2 (0 , 1) consisting of polynomials of order ≤ n with integer coefficients. We may treat P Z n as a lattice in ( n + 1) -dimensional Euclidean space; let λ i ( P Z n ) ( 1 ≤ i ≤ n + 1 ) be the corresponding successive minima. We give rather precise estimates of λ i ( P Z n ) for i (cid:38) 23 n .","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the lattice of polynomials with integer coefficients: successive minima in $L_2(0,1)$\",\"authors\":\"W. Banaszczyk\",\"doi\":\"10.4064/ap190413-20-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let P Z n be the additive subgroup of the real Hilbert space L 2 (0 , 1) consisting of polynomials of order ≤ n with integer coefficients. We may treat P Z n as a lattice in ( n + 1) -dimensional Euclidean space; let λ i ( P Z n ) ( 1 ≤ i ≤ n + 1 ) be the corresponding successive minima. We give rather precise estimates of λ i ( P Z n ) for i (cid:38) 23 n .\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap190413-20-10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap190413-20-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 让Z P n成为《additive subgroup 2》真正的希尔伯特空间L (0, 1) consisting of polynomials of秩序和整数n≤coefficients。我们可以在(n + 1) -次欧几里得空间中解决P - n的问题;让λi Z P (n)(1≤i≤n + 1) be the corresponding successive函数。我们给的很精确的保守λi n P (Z) for一世(cid): 38) 23 n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the lattice of polynomials with integer coefficients: successive minima in $L_2(0,1)$
. Let P Z n be the additive subgroup of the real Hilbert space L 2 (0 , 1) consisting of polynomials of order ≤ n with integer coefficients. We may treat P Z n as a lattice in ( n + 1) -dimensional Euclidean space; let λ i ( P Z n ) ( 1 ≤ i ≤ n + 1 ) be the corresponding successive minima. We give rather precise estimates of λ i ( P Z n ) for i (cid:38) 23 n .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信