具有结构阻尼和二次声的层合梁缺乏指数衰减

IF 0.7 4区 数学 Q2 MATHEMATICS
Wenjun Liu, Xiangyu Kong, Gang Li
{"title":"具有结构阻尼和二次声的层合梁缺乏指数衰减","authors":"Wenjun Liu, Xiangyu Kong, Gang Li","doi":"10.4064/ap181224-17-9","DOIUrl":null,"url":null,"abstract":"In [Z. Angew. Math. Phys. 68 (2017)] Apalara considered a one-dimensional thermoelastic laminated beam under Cattaneo’s law of heat conduction and proved the exponential and polynomial decay results depending on the stability number χτ . In this short note, we continue the study of the same system and show that the solution lacks exponential decay if χτ 6= 0, which solves an open problem proposed by Apalara.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"47 11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Lack of exponential decay for a laminated beam with structural damping and second sound\",\"authors\":\"Wenjun Liu, Xiangyu Kong, Gang Li\",\"doi\":\"10.4064/ap181224-17-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [Z. Angew. Math. Phys. 68 (2017)] Apalara considered a one-dimensional thermoelastic laminated beam under Cattaneo’s law of heat conduction and proved the exponential and polynomial decay results depending on the stability number χτ . In this short note, we continue the study of the same system and show that the solution lacks exponential decay if χτ 6= 0, which solves an open problem proposed by Apalara.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"47 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap181224-17-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap181224-17-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

在[Z。Angew。数学。Apalara考虑了Cattaneo热传导定律下的一维热弹性层合梁,并证明了依赖于稳定性数χτ的指数和多项式衰减结果。在这篇简短的文章中,我们继续对同一系统的研究,并证明当χτ 6= 0时解没有指数衰减,从而解决了Apalara提出的一个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lack of exponential decay for a laminated beam with structural damping and second sound
In [Z. Angew. Math. Phys. 68 (2017)] Apalara considered a one-dimensional thermoelastic laminated beam under Cattaneo’s law of heat conduction and proved the exponential and polynomial decay results depending on the stability number χτ . In this short note, we continue the study of the same system and show that the solution lacks exponential decay if χτ 6= 0, which solves an open problem proposed by Apalara.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信