低维Kirchhoff型问题解的不稳定性

IF 0.7 4区 数学 Q2 MATHEMATICS
Nhat Vy Huynh, Phuong Le
{"title":"低维Kirchhoff型问题解的不稳定性","authors":"Nhat Vy Huynh, Phuong Le","doi":"10.4064/ap181120-3-5","DOIUrl":null,"url":null,"abstract":"We study the Kirchhoff type problem  −m ( Ω w1|∇u| dx ) div(w1|∇u|∇u) = w2f(u) in Ω, u = 0 on ∂Ω, where p ≥ 2, Ω is a C domain of R , w1, w2 are nonnegative functions, m is a positive function and f is an increasing one. Under some assumptions on Ω, w1, w2, m and f , we prove that the problem has no nontrivial stable solution in dimension N < N. Moreover, additional assumptions on Ω, m or the boundedness of solutions can boost this critical dimension N to infinity.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Instability of solutions to Kirchhoff type problems in low dimension\",\"authors\":\"Nhat Vy Huynh, Phuong Le\",\"doi\":\"10.4064/ap181120-3-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Kirchhoff type problem  −m ( Ω w1|∇u| dx ) div(w1|∇u|∇u) = w2f(u) in Ω, u = 0 on ∂Ω, where p ≥ 2, Ω is a C domain of R , w1, w2 are nonnegative functions, m is a positive function and f is an increasing one. Under some assumptions on Ω, w1, w2, m and f , we prove that the problem has no nontrivial stable solution in dimension N < N. Moreover, additional assumptions on Ω, m or the boundedness of solutions can boost this critical dimension N to infinity.\",\"PeriodicalId\":55513,\"journal\":{\"name\":\"Annales Polonici Mathematici\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Polonici Mathematici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap181120-3-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap181120-3-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究Kirchhoff型问题−m (Ω w1|∇u| dx) div(w1|∇u|∇u) = w2f(u)在Ω, u = 0在∂Ω,其中p≥2,Ω是R的C域,w1, w2是非负函数,m是正函数,f是递增函数。在Ω, w1, w2, m和f上的一些假设下,我们证明了问题在N < N维上没有非平凡稳定解,并且,在Ω, m上的附加假设或解的有界性可以将这个临界维N提升到无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability of solutions to Kirchhoff type problems in low dimension
We study the Kirchhoff type problem  −m ( Ω w1|∇u| dx ) div(w1|∇u|∇u) = w2f(u) in Ω, u = 0 on ∂Ω, where p ≥ 2, Ω is a C domain of R , w1, w2 are nonnegative functions, m is a positive function and f is an increasing one. Under some assumptions on Ω, w1, w2, m and f , we prove that the problem has no nontrivial stable solution in dimension N < N. Moreover, additional assumptions on Ω, m or the boundedness of solutions can boost this critical dimension N to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信